精英家教网 > 初中数学 > 题目详情
如图,一个中学生推铅球,铅球在点A处出手,在点B处落地,它的运行路线是一条抛物线,在平面直角坐标系中,这条抛物线的解析式为:y=-
1
12
x2+
2
3
x+
5
3

(1)请用配方法把y=-
1
12
x2+
2
3
x+
5
3
化成y=a(x-h)2+k的形式.
(2)求出铅球在运行过程中到达最高点时离地面的距离和这个学生推铅球的成绩.(单位:米)
(1)∵y=-
1
12
x2+
2
3
x+
5
3

∴y=-
1
12
(x2-8x)+
5
3

∴y=-
1
12
(x-4)2+3.

(2)∵抛物线的顶点坐标为(4,3),
∴铅球在运行过程中到达最高点时离地面的距离为3米,
当y=0时,-
1
12
(x-4)2+3=0,
解得:x1=-2,x2=10,
∵x>0,∴取x=10,
∴这个学生投铅球的成绩是10米.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系中,A(-1,0),B(3,0).
(1)若抛物线过A,B两点,且与y轴交于点(0,-3),求此抛物线的顶点坐标;
(2)如图,小敏发现所有过A,B两点的抛物线如果与y轴负半轴交于点C,M为抛物线的顶点,那么△ACM与△ACB的面积比不变,请你求出这个比值;
(3)若对称轴是AB的中垂线l的抛物线与x轴交于点E,F,与y轴交于点C,过C作CPx轴交l于点P,M为此抛物线的顶点.若四边形PEMF是有一个内角为60°的菱形,求此抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2+bx+3经过A(-3,0),B(-1,0)两点如图1,顶点为M.
(1)求a、b的值;
(2)设抛物线与y轴的交点为Q,且直线y=-2x+9与直线OM交于点D(如图1).现将抛物线平移,保持顶点在直线OD上,当抛物线的顶点平移到D点时,Q点移至N点,求抛物线上的两点M、Q间所夹的曲线
MQ
扫过的区域的面积;
(3)将抛物线平移,当顶点M移至原点时,过点Q(0,3)作不平行于x轴的直线交抛物线于E,F两点(如图2).试探究:在y轴的负半轴上是否存在点P,使得∠EPQ=∠QPF?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线y=x+3与坐标轴分别交于A,B两点,抛物线y=ax2+bx-3a经过点A,B,顶点为C,连接CB并延长交x轴于点E,点D与点B关于抛物线的对称轴MN对称.
(1)求抛物线的解析式及顶点C的坐标;
(2)求证:四边形ABCD是直角梯形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,将OA=8,AB=6的矩形OABC放置在平面直角坐标系中,动点M,N以每秒1个单位的速度分别从点A,C同时出发,其中点M沿AO向终点O运动,点N沿CB向终点B运动,当两个动点运动了t秒时,过点N作NP⊥BC,交OB于点P,连接MP.
(1)点B的坐标为______;用含t的式子表示点P的坐标为______;
(2)记△OMP的面积为S,求S与t的函数关系式(0<t<8),并求当t为何值时,S有最大值?若有,求出这个最大值;
(3)试探究:在上述运动过程中,是否存在某一个时刻,△OPM是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2-2x+c与它的对称轴相交于点A(1,-4),与y轴交于C,与x轴正半轴交于B.
(1)求这条抛物线的函数关系式;
(2)设直线AC交x轴于D,P是线段AD上一动点(P点异于A,D),过P作PEx轴交直线AB于E,过E作EF⊥x轴于F,求当四边形OPEF的面积等于
7
2
时点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

欢欢家想利用房屋侧面的一面墙,再砌三面墙,围成一个矩形猪圈(如图),一面墙的中间留出1米宽的进出门(门使用另外的材料).现备有足够砌11米长的围墙的材料,设猪圈与已有墙面垂直的墙的长度为x米,猪圈面积为y平方米.
(1)写出y与x之间的函数关系式.
(2)要使猪圈面积为16平方米,如何设计三面围墙的长度.
(3)能否使猪圈面积为20平方米?说明理由.
(4)你能求出猪圈面积的最大值吗?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

一男生推铅球,铅球在运动过程中,高度不断发生变化.已知当铅球飞出的水平距离为x时,其高度为(-
1
12
x2+
2
3
x+
5
3
)
米,则这位同学推铅球的成绩为(  )
A.9米B.10米C.11米D.12米

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

某校数学研究性学习小组准备设计一种高为60cm的简易废纸箱.如图甲,废纸箱的一面利用墙,放置在地面上,利用地面作底,其它的面用一张边长为60cm的正方形硬纸板围成.经研究发现:由于废纸箱的高是确定的,所以废纸箱的横截面图形面积越大,则它的容积越大.该小组通过多次尝试,最终选定乙图中的简便且易操作的三种横截面图形.在三个图的比较中,图______横截面图形的面积最大(填序号①②③),则围成最大的体积是______cm3.(结果保留根号)

查看答案和解析>>

同步练习册答案