精英家教网 > 初中数学 > 题目详情
若二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个不同的交点A(1,0)、B(-3,0),与y轴的负半轴交于点C,且S△ABC=6.
(Ⅰ)求该二次函数的解析式和顶点P的坐标;
(Ⅱ)经过A、B、P三点画⊙O′,求⊙O′的面积;
(Ⅲ)设抛物线上有一动点M(a,b),连AM,BM,试判断△ABM能否是直角三角形?若能,求出M点的坐标;若不能,请说明理由.
【答案】分析:(Ⅰ)由A(1,0)、B(-3,0),与y轴的负半轴交于点C,且S△ABC=6,即可求得c的值,即点C的坐标,然后利用待定系数法即可求得此二次函数的解析式,然后利用配方法即可求得顶点P的坐标;
(Ⅱ)由经过A、B、P三点画⊙O′,即可知O′在以△ABP的三边的垂直平分线的交点处,则过点P作PC⊥AB于C,根据二次函数的对称性,可知点O′在此直线PC上,即可设O′为(-1,m),然后由O′P=O′B,即可求得m的值,继而得到⊙O′的半径长,利用圆的面积公式求得⊙O′的面积;
(3)由抛物线上有一动点M(a,b),△ABM是直角三角形,可知∠AMB是直角,然后设M(x,x2+2x-3),根据勾股定理,即可求得方程:(x+3)2+(x2+2x-3)2+(x-1)2+(x2+2x-3)2=16,解此方程即可求得M点的坐标.
解答:解:(Ⅰ)∵y轴的负半轴交于点C(0,c),
∴c<0,
∵A(1,0)、B(-3,0),
∴AB=4,
∴S△ABC=×AB×|c|=6,
∴c=-3,
∴点C的坐标为(0,-3),

解得:
∴该二次函数的解析式为:y=x2+2x-3,
∵y=x2+2x-3=(x+1)2-4,
∴顶点P的坐标为(-1,-4);

(Ⅱ)如图:根据题意得:PA=PB,
过点P作PC⊥AB于C,
∴AC=BC,
∴O′在PC上,
设O′的坐标为(-1,m),
∵O′P=O′B=
∴m-(-4)=
解得:m=-
∴O′P=-+4=
∴⊙O′的面积为:π;

(Ⅲ)存在.
设抛物线上有一动点M(x,x2+2x-3),
若△ABM是直角三角形,
则∠AMB=90°,
∴AM2+BM2=AB2
∴(x+3)2+(x2+2x-3)2+(x-1)2+(x2+2x-3)2=16,
∴2(x2+2x-3)2+(2x2+4x+10)=16,
∴2(x2+2x-3)2+2(x2+2x-3)+16=16,
∴(x2+2x-3)(x2+2x-3+1)=0,
解得:x1=-3(舍去),x2=1(舍去),x3=-1,x4=--1,
当x3=-1时,y=-1,
当x4=--1时,y=-1,
∴M点的坐标为:(-1,-1)或(--1,-1).
点评:此题考查了待定系数法求二次函数的解析式、三角形的外接圆、勾股定理、两点间的距离公式等知识.此题综合性很强,难度较大,解此题的关键是注意数形结合思想与方程思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

若二次函数y=ax2+bx+c的图象经过点(0,-1),(5,-1),则它的对称轴方程是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

15、若二次函数y=ax2+2x+c的值总是负值,则
a<0,ac>0

查看答案和解析>>

科目:初中数学 来源: 题型:

(2010•河北区模拟)若二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个不同的交点A(1,0)、B(-3,0),与y轴的负半轴交于点C,且S△ABC=6.
(Ⅰ)求该二次函数的解析式和顶点P的坐标;
(Ⅱ)经过A、B、P三点画⊙O′,求⊙O′的面积;
(Ⅲ)设抛物线上有一动点M(a,b),连AM,BM,试判断△ABM能否是直角三角形?若能,求出M点的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1998•大连)若二次函数y=ax2+bx+c(a≠0)的图象如图,则直线y=bx-c不经过(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知点O为坐标原点,∠AOB=30°,∠B=90°,且点A的坐标为(2,0).
(1)求点B的坐标;
(2)若二次函数y=ax2+bx+c的图象经过A,B,O三点,求此二次函数的解析式;
(3)在(2)中的二次函数图象的OB段(不包括O,B点)上,是否存在一点C,使得四边形ABCO的面积最大?若存在,求出点C的坐标及四边形ABCO的最大面积;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案