精英家教网 > 初中数学 > 题目详情
已知:关于x的二次函数y=-x2+(m+2)x-m.
(1)求证:不论m为任何实数,二次函数的图象的顶点P总是在x轴的上方;
(2)设二次函数图象与y轴交于A,过点A作x轴的平行线与图象交于另外一点B.若顶点P在第一象限,当m为何值时,△PAB是等边三角形.
【答案】分析:(1)只要求出顶点的纵坐标为正,就能确定顶点P总是在x轴的上方,根据顶点的纵坐标公式求解;
(2)根据图形可以看出,对称轴把等边三角形分成两个全等的30°的直角三角形,根据点的坐标与线段的关系可以求解.
解答:(1)证明:二次函数y=-x2+(m+2)x-m中,a=-1,b=m+2,c=-m,
∴顶点P的纵坐标为==>0,
∴顶点P总在x轴上方;

(2)解:二次函数y=-x2+(m+2)x-m与y轴交于点A(0,-m),
顶点P(),
过P作PC⊥AB于C,则C(,-m),
因为点P在第一象限,所以>0,
AC=,PC=
∵△PAB是等边三角形,
∴∠PAC=60°,
由tan∠PAC==),
整理得:(m+2)2=2(m+2),
∴m+2=2
∴m=2-2,
即m=2-2时,△PAB是等边三角形.
点评:解答此题的关键是求出对称轴,顶点纵坐标,然后由图象解答,锻炼了学生数形结合的思想方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:关于x的方程mx2-3(m-1)x+2m-3=0.
(1)求证:m取任何实数量,方程总有实数根;
(2)若二次函数y1=mx2-3(m-1)x+2m-3的图象关于y轴对称;
①求二次函数y1的解析式;
②已知一次函数y2=2x-2,证明:在实数范围内,对于x的同一个值,这两个函数所对应的函数值y1≥y2均成立;
(3)在(2)条件下,若二次函数y3=ax2+bx+c的图象经过点(-5,0),且在实数范围内,对于x的同一个值,这三个函数所对应的函数值y1≥y3≥y2均成立,求二次函数y3=ax2+bx+c的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的二次函数y=ax2+2ax+7a-3在-2≤x≤5上的函数值始终是正的,则a的取值范围(  )
A、a>
1
2
B、a<0或a>
1
14
C、a>
1
14
D、
1
14
<a<
1
2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知关于x的二次函数y=x2+(2k-1)x+k2-1.
(1)若关于x的一元二次方程x2+(2k-1)x+k2-1=0的两根的平方和等于9,求k的值,并在直角坐标系(如图)中画出函数y=x2+(2k-1)x+k2-1的大致图象;
(2)在(1)的条件下,设这个二次函数的图象与x轴从左至右交于A、B两点.问函数对称轴右边的图象上,是否存在点M,使锐角△AMB的面积等于3.若存在,请求出点M的坐标;若不存在,请说明理由;
(3)在(1)、(2)条件下,若P点是二次函图象上的点,且∠PAM=90°,求△APM的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知一次函数y1=2x,二次函数y2=mx2-3(m-1)x+2m-1的图象关于y轴对称,y2的顶点为A.
(1)求二次函数y2的解析式;
(2)将y2左右平移得到y3交y2于P点,过P点作直线l∥x轴交y3于点M,若△PAM为等腰三角形,求P点坐标;
(3)是否存在二次函数y4=ax2+bx+c,其图象经过点(-5,2),且对于任意一个实数x,这三个函数所对应的函数值y1、y2、y4都有y1≤y4≤y2成立?若存在,求出函数y4的解析式;若不存在,请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源:北京模拟题 题型:解答题

已知:关于x的方程mx2-3(m-1)x+2m-3=0。
(1)求证:m取任何实数时,方程总有实数根;
(2)若二次函数y1=mx2-3(m-1)x+2m-3的图象关于y轴对称,
①求二次函数y的解析式;
②已知一次函数y2=2x-2,证明:在实数范围内,对于x的同一个值,这两个函数所对应的函数值y1≥y2均成立;
(3)在(2)条件下,若二次函数y3=ax2+bx+c的图象经过点(-5,0),且在实数范围内,对于x的同一个值,这三个函数所对应的函数值y1≥y3≥y2 均成立,求二次函数y3=ax2+bx+c的解析式。

查看答案和解析>>

同步练习册答案