精英家教网 > 初中数学 > 题目详情
26、如图1,直线AC∥BD,直线AC、BD及直线AB把平面分成(1)、(2)、(3)、(4)、(5)、(6)六个部分.点P是其中的一个动点,连接PA、PB,观察∠APB、∠PAC、∠PBD三个角.规定:直线AC、BD、AB上的各点不属于(1)、(2)、(3)、(4)、(5)、(6)六个部分中的任何一个部分.
当动点P落在第(1)部分时,可得:∠APB=∠PAC+∠PBD,请阅读下面的解答过程,并在相应的括号内填注理由
解:过点P作EF∥AC,如图2
因为AC∥BD(已知),EF∥AC(所作),
所以EF∥BD
(平行线的传递性)

所以∠BPE=∠PBD
(两直线平行,内错角相等)

同理∠APE=∠PAC.
因此∠APE+∠BPE=∠PAC+∠PBD
(等量代换)

即∠APB=∠PAC+∠PBD.
(1)当动点P落在第(2)部分时,∠APB、∠PAC、∠PBD之间的关系是怎样的?请直接写出∠APB、∠PAC、∠PBD之间满足的关系式,不必说明理由.
(2)当动点P在第(3)部分时,∠APB、∠PAC、∠PBD之间的关系是怎样的?请直接写出相应的结论.
(3)当动点P在第(4)部分时,∠APB、∠PAC、∠PBD之间的关系是怎样的?请直接写出相应的结论.
分析:根据平行线的传递性、平行线的性质填空;
(1)过点P作EF∥AC,如图3,根据平行线的性质、传递性和等式的基本性质可得出∠APB+∠PAC+∠PBD=360°;
(2)过点P作EF∥AC,如图4,根据平行线的性质、传递性可得出∠PAC=∠APB+∠PBD;
(3)过点P作EF∥AC,如图5,根据平行线的性质、传递性可得出∠PAC+∠APB=∠PBD.
解答:解:过点P作EF∥AC,如图2
因为AC∥BD(已知),EF∥AC(所作),
所以EF∥BD (平行线的传递性).
所以∠BPE=∠PBD (两直线平行,内错角相等).
同理∠APE=∠PAC.
因此∠APE+∠BPE=∠PAC+∠PBD(等量代换),
即∠APB=∠PAC+∠PBD.
(1)过点P作EF∥AC,如图3,

因为AC∥BD(已知),EF∥AC(所作),
所以EF∥BD (平行线的传递性).
所以∠BPF+∠PBD=180° (两直线平行,同旁内角互补).
同理∠APF+∠PAC=180° (两直线平行,同旁内角互补).
因此∠APF+∠BPF+∠PAC+∠PBD=360°(等式的基本性质),
即∠APB+∠PAC+∠PBD=360°.
(2)过点P作EF∥AC,如图4,

∠PAC=∠APB+∠PBD;
(3)过点P作EF∥AC,如图5,

∠PAC+∠APB=∠PBD.
故答案为:平行线的传递性,两直线平行,内错角相等,等量代换).
点评:本题考查了平行线的性质以及数形结合思想的应用,是基础知识比较简单.
练习册系列答案
相关习题

科目:初中数学 来源:2012-2013学年江苏省姜堰市八年级上学期期末考试数学试卷(带解析) 题型:解答题

如图,一直线AC与已知直线AB:关于y轴对称。

(1)求直线AC的解析式;
(2)说明两直线与x轴围成的三角形是等腰三角形。

查看答案和解析>>

科目:初中数学 来源:2014届江苏省姜堰市八年级上学期期末考试数学试卷(解析版) 题型:解答题

如图,一直线AC与已知直线AB:关于y轴对称。

(1)求直线AC的解析式;

(2)说明两直线与x轴围成的三角形是等腰三角形。

 

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图1,直线AC∥BD,直线AC、BD及直线AB把平面分成(1)、(2)、(3)、(4)、(5)、(6)六个部分.点P是其中的一个动点,连接PA、PB,观察∠APB、∠PAC、∠PBD三个角.规定:直线AC、BD、AB上的各点不属于(1)、(2)、(3)、(4)、(5)、(6)六个部分中的任何一个部分.
当动点P落在第(1)部分时,可得:∠APB=∠PAC+∠PBD,请阅读下面的解答过程,并在相应的括号内填注理由
解:过点P作EF∥AC,如图2
因为AC∥BD(已知),EF∥AC(所作),
所以EF∥BD______.
所以∠BPE=∠PBD______.
同理∠APE=∠PAC.
因此∠APE+∠BPE=∠PAC+∠PBD______,
即∠APB=∠PAC+∠PBD.
(1)当动点P落在第(2)部分时,∠APB、∠PAC、∠PBD之间的关系是怎样的?请直接写出∠APB、∠PAC、∠PBD之间满足的关系式,不必说明理由.
(2)当动点P在第(3)部分时,∠APB、∠PAC、∠PBD之间的关系是怎样的?请直接写出相应的结论.
(3)当动点P在第(4)部分时,∠APB、∠PAC、∠PBD之间的关系是怎样的?请直接写出相应的结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,直线ACBD,直线AC、BD及直线AB把平面分成(1)、(2)、(3)、(4)、(5)、(6)六个部分.点P是其中的一个动点,连接PA、PB,观察∠APB、∠PAC、∠PBD三个角.规定:直线AC、BD、AB上的各点不属于(1)、(2)、(3)、(4)、(5)、(6)六个部分中的任何一个部分.
当动点P落在第(1)部分时,可得:∠APB=∠PAC+∠PBD,请阅读下面的解答过程,并在相应的括号内填注理由
过点P作EFAC,如图2
因为ACBD(已知),EFAC(所作),
所以EFBD______.
所以∠BPE=∠PBD______.
同理∠APE=∠PAC.
因此∠APE+∠BPE=∠PAC+∠PBD______,
即∠APB=∠PAC+∠PBD.
(1)当动点P落在第(2)部分时,∠APB、∠PAC、∠PBD之间的关系是怎样的?请直接写出∠APB、∠PAC、∠PBD之间满足的关系式,不必说明理由.
(2)当动点P在第(3)部分时,∠APB、∠PAC、∠PBD之间的关系是怎样的?请直接写出相应的结论.
(3)当动点P在第(4)部分时,∠APB、∠PAC、∠PBD之间的关系是怎样的?请直接写出相应的结论.

精英家教网

查看答案和解析>>

同步练习册答案