精英家教网 > 初中数学 > 题目详情
已知:在△ABC中,∠ACB为锐角,D是射线BC上一动点(D与C不重合).以AD为一边向右侧作等边△ADE(C与E不重合),连接CE.
(1)若△ABC为等边三角形,当点D在线段BC上时,(如图1所示),则直线BD与直线CE所夹锐角为
60
60
度;
(2)若△ABC为等边三角形,当点D在线段BC的延长线上时(如同2所示),你在(1)中得到的结论是否仍然成立?请说明理由;
(3)若△ABC不是等边三角形,且BC>AC(如图3所示).试探究当点D在线段BC上时,你在(1)中得到的结论是否仍然成立?若成立,请说明理由;若不成立,请指出当∠ACB满足什么条件时,能使(1)中的结论成立?并说明理由.
分析:(1)根据△ABC为等边三角形,等边△ADE,得出△ABD≌△ACE,进而得出∠ECF=180°-∠ACB-60°=60°,从而得出答案;
(2)根据△ABC与△ADE都是等边三角形,得出△BAD≌△CAE,进而得出∠ECF=180°-(∠ACB+∠ACE)=60°;
(3)分别根据当CD<AC时,当CD=AC时,当CD>AC时,分别分析得出答案.
解答:解:(1)若△ABC为等边三角形,当点D在线段BC上时,△ABC为等边三角形,等边△ADE,
∴AB=AC,AE=AD,
∵∠ABD=60°-∠DAC,∠CAE=60°-∠DAC,
∴∠ABD=∠CAE,
∴△ABD≌△ACE,
∴∠B=∠ACE=60°,
∴∠ECF=180°-∠ACB-60°=60°,
∴直线BD与直线CE所夹锐角为 60°;
 
(2)仍然有直线BD与直线CE所夹锐角为60°,
证明:∵△ABC与△ADE都是等边三角形,
∴AB=AC,AD=AE,∠BAC=∠DAE=60°,
∴∠BAC+∠CAD=∠DAE+∠CAD,
即∠BAD=∠CAE,
∴△BAD≌△CAE,
∴∠ACE=∠B=60°,
∴∠ECF=180°-(∠ACB+∠ACE)=60°,

(3)问题(1)中结论不成立,当∠ACB=60°时,能使直线BD与直线CE所夹锐角为60°,
证法一:①当CD<AC时,在CB上截取一点G,使得CG=CA,连接AG(如图所示),
∵∠ACB=60°,
∴△GAC是等边三角形,
∴AC=AG,∠AGC=∠GAC=60°,
∵△ADE是等边三角形,
∴AE=AD,∠DAE=60°,
∴∠DAE-∠CAD=∠GAC-∠CAD,
从而∠CAE=∠GAD,
∴△ACE≌△AGD,
∴∠ACE=∠AGD=60°,
∴∠ECF=180°-(∠ACB+∠ACE)=60°,
此时直线BC与直线CE所夹锐角为60°,
②当CD=AC时,点C与点E重合,不符合题意.
③当CD>AC时,延长EC到H,在CB上截取一点G,使得CG=CA,连接AG(如图所示).
同(1)可证△ACE≌△AGD.
∴∠ACE=∠AGD=180°-∠AGC=120°,
∴∠HCF=∠DCE=120°-∠ACB=60°,
此时直线BC与直线CE所夹锐角为60°.
点评:此题主要考查了全等三角形的判定与性质,根据已知进行分类讨论当CD<AC时,当CD=AC时,当CD>AC时得出答案是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

25、已知:在△ABC中AB=AC,点D在CB的延长线上.
求证:AD2-AB2=BD•CD.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网(1)化简:(a-
1
a
)÷
a2-2a+1
a

(2)已知:在△ABC中,AB=AC.
①设△ABC的周长为7,BC=y,AB=x(2≤x≤3).写出y关于x的函数关系式;
②如图,点D是线段BC上一点,连接AD,若∠B=∠BAD,求证:△BAC∽△BDA.

查看答案和解析>>

科目:初中数学 来源: 题型:

20、如图,已知,在△ABC中,∠ABC和∠ACB的平分线交于点M,ME∥AB交BC于点E,MF∥AC交BC于点F.求证:△MEF的周长等于BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

12、已知,在△ABC中,AB=AC=x,BC=6,则腰长x的取值范围是
x>3

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:在△ABC中,∠B<∠C,AD平分∠BAC,AE⊥BC,垂足为点E.∠B=38°,∠C=70°.
①求∠DAE的度数;
②试写出∠DAE与∠B、∠C之间的一般等量关系式(只写结论)

查看答案和解析>>

同步练习册答案