【题目】数学课上,张老师出示了问题:如图1,、是四边形的对角线,若,则线段,,三者之间有何等量关系?
经过思考,小明展示了一种正确的思路:如图2,延长到,使,连接,证得,从而容易证明是等边三角形,故,所以.
小亮展示了另一种正确的思路:如图3,将绕着点逆时针旋转,使与重合,从而容易证明是等比三角形,故,所以.
在此基础上,同学们作了进一步的研究:
(1)小颖提出:如图4,如果把“”改为“”,其它条件不变,那么线段,,三者之间有何等量关系?针对小颖提出的问题,请你写出结论,并给出证明.
(2)小华提出:如图5,如果把“”改为“”,其它条件不变,那么线段,,三者之间有何等量关系?针对小华提出的问题,请你写出结论,不用证明.
【答案】(1)BC+CD=AC(2)BC+CD=2ACcosα
【解析】
试题分析:(1)先判断出∠ADE=∠ABC,即可得出△ACE是等腰三角形,再得出∠AEC=45°,即可得出等腰直角三角形,即可;(判断∠ADE=∠ABC也可以先判断出点A,B,C,D四点共圆)
(2)先判断出∠ADE=∠ABC,即可得出△ACE是等腰三角形,再用三角函数即可得出结论.
试题解析:(1)BC+CD=AC;
理由:如图1,
延长CD至E,使DE=BC,
∵∠ABD=∠ADB=45°,
∴AB=AD,∠BAD=180°﹣∠ABD﹣∠ADB=90°,
∵∠ACB=∠ACD=45°,
∴∠ACB+∠ACD=45°,
∴∠BAD+∠BCD=180°,
∴∠ABC+∠ADC=180°,
∵∠ADC+∠ADE=180°,
∴∠ABC=∠ADE,
在△ABC和△ADE中,,
∴△ABC≌△ADE(SAS),
∴∠ACB=∠AED=45°,AC=AE,
∴△ACE是等腰直角三角形,
∴CE=AC,
∵CE=CE+DE=CD+BC,
∴BC+CD=AC;
(2)BC+CD=2ACcosα.
理由:如图2,
延长CD至E,使DE=BC,
∵∠ABD=∠ADB=α,
∴AB=AD,∠BAD=180°﹣∠ABD﹣∠ADB=180°﹣2α,
∵∠ACB=∠ACD=α,
∴∠ACB+∠ACD=2α,
∴∠BAD+∠BCD=180°,
∴∠ABC+∠ADC=180°,
∵∠ADC+∠ADE=180°,
∴∠ABC=∠ADE,
在△ABC和△ADE中,,
∴△ABC≌△ADE(SAS),
∴∠ACB=∠AED=α,AC=AE,
∴∠AEC=α,
过点A作AF⊥CE于F,
∴CE=2CF,在Rt△ACF中,∠ACD=α,CF=ACcos∠ACD=ACcosα,
∴CE=2CF=2ACcosα,
∵CE=CD+DE=CD+BC,
∴BC+CD=2ACcosα.
科目:初中数学 来源: 题型:
【题目】如图,直线y=﹣x+分别与x轴、y轴交于B、C两点,点A在x轴上,∠ACB=90°,抛物线y=ax2+bx+经过A,B两点.
(1)求A、B两点的坐标;
(2)求抛物线的解析式;
(3)点M是直线BC上方抛物线上的一点,过点M作MH⊥BC于点H,作MD∥y轴交BC于点D,求△DMH周长的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某工厂计划生产一种新型豆浆机,每台豆浆机需3个甲种零件和5个乙种零件正好配套,已知车间每天能生产甲种零件450个或乙种零件300个,现要在21天中使所生产的零件全部配套,那么应该安排多少天生产甲种零件,安排多少天生产乙种零件?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把点M(-2,1)向右平移3个单位长度,再向下平移2个单位长度后得到点N,则点N的坐标为( )
A.(-4,4)B.(-5,3)C.(1,-1)D.(-5,-1)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com