分析 根据旋转变换只改变图形的位置不改变图形的形状与大小可得△AB′C′和△ABC全等,然后推出阴影部分的面积等于扇形ABB′的面积减去扇形ACC′的面积,再根据扇形的面积公式列式进行计算即可得解.
解答 解:∵在△ABC中,∠ACB=90°,BC=AC=2,
∴AB=2$\sqrt{2}$.
∵△ABC绕点A按顺时针方向旋转45°后得到△AB′C′,
∴△AB′C′≌△ABC,
∴S阴影=S扇形ABB′+S△AB′C′-S△ABC-S扇形ACC′=S扇形ABB′-S扇形ACC′,
∴阴影部分的面积=$\frac{45•π•(2\sqrt{2})^{2}}{360}$-$\frac{45•π×{2}^{2}}{360}$=$\frac{1}{2}$π.
故答案是:$\frac{1}{2}$π.
点评 本题考查了旋转的性质,等腰直角三角形的性质,扇形的面积计算,根据旋转的性质得到两三角形全等,然后推出阴影部分的面积等于两个扇形的面积的差是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
分数 | 50 | 60 | 70 | 80 | 90 | 100 |
人数 | 1 | 2 | 8 | 13 | 14 | 4 |
A. | 70,80 | B. | 70,90 | C. | 80,90 | D. | 90,100 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{1}{4}$ | B. | $\frac{1}{5}$ | C. | $\frac{2}{5}$ | D. | $\frac{3}{20}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 众数是90分 | B. | 中位数是90分 | C. | 平均数是90分 | D. | 极差是15分 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com