精英家教网 > 初中数学 > 题目详情

【题目】如图,正五边形ABCDE中.

(1)AC与BE相交于P,求证:四边形PEDC为菱形;
(2)延长DC、AE交于M点,连BM交CE于N,求证:CN=EP;
(3)若正五边形边长为2,直接写出AD的长为

【答案】
(1)证明:如图1中,

∵五边形ABCDE是正五边形,
∴∠BCD=∠BAE=108°,
∵AB=AE,
∴∠ABE=∠AEB=36°,
∴∠CBE=72°,
∴∠DCB+∠CBE=180°,
∴CD∥BE,
同法可证,AC∥DE,
∴∴四边形PEDC是平行四边形,
∵CD=DE,
∴四边形PEDC是菱形
(2)证明:如图2中,连接AN.

∵∠MCA=∠MAC=72°,
∴MC=MA,
∵BC=BA,
∴BM垂直平分线段AC,
∴NC=NA,
∴∠NCA=∠NAC=∠CEP=36°,
∵∠PAE=∠NEA=72°,
∴∠PEA=∠NAE=36°,
∵AE=EA,
∴△PAE≌△NEA,
∴AN=PE,
∴CN=PE
(3) +1
【解析】(3)解:如图3中.在AD上取一点W,使得AW=WE.设AW=x.

∵∠A=∠D=∠AEW=36°,
∴∠DWE=∠DEW=72°,
∴DW=DE=2,
∵∠A=∠A,∠AEW=∠D,
∴△AWE∽△AED,
∴AE2=AWAD,
∴22=x(x+2),
解得x= ﹣1,
∴AD=2+x= +1,
故答案为 +1
(1)根据正五边形的性质及等腰三角形的性质求出∠DCB和∠CBE的度数,就可证明∠DCB+∠CBE=180°,可得CD∥BE,同法可证AC∥ED,由此根据菱形的判定即可证明。
(2)如图2中,连接AN,先根据MC=MA,BC=BA得出BM垂直平分线段AC,得出CN=AN,再证明△PAE≌△NEA,即可解决问题。
(3)如图3中.在AD上取一点W,使得AW=WE.设AW=x,相聚已知条件证明△AWE∽△AED,可得AE2=AWAD,构建方程即可解决问题。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线y= x2+bx﹣2与x轴交于A、B两点,与y轴交于C点,且A(﹣1,0).

(1)求抛物线的解析式及顶点D的坐标;
(2)判断△ABC的形状,证明你的结论;
(3)点M是x轴上的一个动点,当△DCM的周长最小时,求点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知一次函数的图像与轴相交于点,与轴相交于点

1)求点坐标和点坐标;

2)点是线段上一点,点为坐标原点,点在第二象限,且四边形为菱形,求点坐标;

3)在(2)的条件下,点为平面直角坐标系中一点,以为顶点的四边形是平行四边形,请直接写出所有满足条件的点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,直线ABCD

(1)如图1,点E在直线BD的左侧,猜想∠ABE、CDE、BED的数量关系,并证明你的结论;

(2)如图2,点E在直线BD的左侧,BF、DF分别平分∠ABE、CDE,猜想∠BFD和∠BED的数量关系,并证明你的结论;

(3)如图3,点E在直线BD的右侧,BF、DF分别平分∠ABE、CDE;那么第(2)题中∠BFD和∠BED的数量关系的猜想是否仍成立?如果成立,请证明;如果不成立,请写出你的猜想,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有一个边长不定的正方形ABCD,它的两个相对的顶点A,C分别在边长为1的正六边形一组平行的对边上,另外两个顶点B,D在正六边形内部(包括边界),则正方形边长a的取值范围是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将Rt△ABC绕直角顶点A逆时针旋转90°得到△ADE,BC的延长线交DE于F,连接BD,若BC=2EF,试证明△BED是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若实数m、n满足等式,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=ACD在边AC上,且BD=DA=BC

1)如图1,填空:A=_______

2)如图2,若M为线段AC上的点,过M作直线MHBDH,分别交直线ABBC于点NE

求证:BNE是等腰三角形;

试写出线段ANCECD之间的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).

①以原点O为对称中心,画出△ABC关于原点O对称的△A1B1C1
②将△ABC绕A点逆时针旋转90°得到△AB2C2 , 画出△AB2C2 , 并求出AC扫过的面积.

查看答案和解析>>

同步练习册答案