【题目】(2016四川省乐山市第24题)如图,正比例函数的图象与反比例函数的图象交于A、B两点,过点A作AC垂直x轴于点C,连结BC.若△ABC的面积为2.
(1)求k的值;
(2)x轴上是否存在一点D,使△ABD为直角三角形?若存在,求出点D的坐标;若不存在,请说明理由.
【答案】(1)k=2;(2)D(5,0)或(﹣5,0)或(,0)或D(,0).
【解析】
试题分析:(1)首先根据反比例函数与正比例函数的图象特征,可知A、B两点关于原点对称,则O为线段AB的中点,故△BOC的面积等于△AOC的面积,都等于1,然后由反比例函数的比例系数k的几何意义,可知△AOC的面积等于,从而求出k的值;
(2)先将与联立成方程组,求出A、B两点的坐标,然后分三种情况讨论:①当AD⊥AB时,求出直线AD的关系式,令y=0,即可确定D点的坐标;②当BD⊥AB时,求出直线BD的关系式,令y=0,即可确定D点的坐标;③当AD⊥BD时,由O为线段AB的中点,可得OD=AB=OA,然后利用勾股定理求出OA的值,即可求出D点的坐标.
试题解析:(1)∵反比例函数与正比例函数的图象相交于A、B两点,∴A、B两点关于原点对称,∴OA=OB,∴△BOC的面积=△AOC的面积=2÷2=1,又∵A是反比例函数图象上的点,且AC⊥x轴于点C,∴△AOC的面积=,∴,∵k>0,∴k=2.故这个反比例函数的解析式为;
(2)x轴上存在一点D,使△ABD为直角三角形.将与联立成方程组得:,解得:,,∴A(1,2),B(﹣1,﹣2),
①当AD⊥AB时,如图1,
设直线AD的关系式为,将A(1,2)代入上式得:,∴直线AD的关系式为,令y=0得:x=5,∴D(5,0);
②当BD⊥AB时,如图2,
设直线BD的关系式为,将B(﹣1,﹣2)代入上式得:,∴直线AD的关系式为,令y=0得:x=﹣5,∴D(﹣5,0);
③当AD⊥BD时,如图3,
∵O为线段AB的中点,∴OD=AB=OA,∵A(1,2),∴OC=1,AC=2,由勾股定理得:OA==,∴OD=,∴D(,0),
根据对称性,当D为直角顶点,且D在x轴负半轴时,D(,0);
故x轴上存在一点D,使△ABD为直角三角形,点D的坐标为(5,0)或(﹣5,0)或(,0)或D(,0).
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,2),则点B2016的坐标为( )
A. (4032 ,2) B. (6048,2) C. (4032,0) D. (6048,0)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,OA=OB=OC=6,过点A的直线AD交BC于点D,交y轴与点G,△ABD的面积为△ABC面积的.
(1)直接写出点D的坐标;
(2)过点C作CE⊥AD,交AB交于F,垂足为E.
①求证:OF=OG;(3分) ②求点F的坐标.
(3)在(2)的条件下,在第一象限内是否存在点P,使△CFP为等腰直角三角形,若存在,直接写出点P坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠AOC=90°,∠BOC=60°,OE平分∠BOC,OD平分∠AOB.求:
(1)∠DOE度数;
(2)若∠BOC=α(0<α<90°),其他条件不变,∠DOE的度数是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图 (1)、(2)都是几何体的平面展开图,先想一想,再折一折,然后说出图 (1)、(2)折叠后的几何体名称、底面形状、侧面形状、棱数、侧棱数与顶点数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线与x轴、轴分别相交于点C、B,与直线相交于
点A.
(1)点B、点C和点A的坐标分别是(0, )、( ,0)、( , );
(2)求两条直线与轴围成的三角形的面积;
(3)在坐标轴上是否存在一点Q,使△OAQ的面积等于6,若存在请直接写出Q点的坐标,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com