精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系xOy中,A、B为x轴上两点,C、D为y轴上的两点,经过点A、C、B的抛物线的一部分C1与经过点A、D、B的抛物线的一部分C2组成一条封闭曲线,我们把这条封闭曲线称为“蛋线”,已知点C的坐标为(0,-),点M是抛物线C2:y=mx2-2mx-3m(m<0)的顶点.

(1)求A、B两点的坐标;
(2)“蛋线”在第四象限内是否存在一点P,使得∆PBC的面积最大?若存在,求出∆PBC面积的最大值;若不存在,请说明理由;
(3)当∆BDM为直角三角形时,请直接写出m的值.(参考公式:在平面直角坐标系中,若M(x1,y1),N(x2,y2),则M、N两点间的距离为MN=.
(1)A(-1,0),B(3,0);(2)存在,;(3)-1或-.

试题分析:(1)将y=mx2-2mx-3m化为交点式,即可得到A、B两点的坐标;
(2)先用待定系数法得到抛物线C1的解析式,过点P作PQ∥y轴,交BC于Q,用待定系数法得到直线BC的解析式,再根据三角形的面积公式和配方法得到△PBC面积的最大值;
(3)先表示出DM2,BD2,MB2,再分两种情况:①DM2+BD2=MB2时;②DM2+MB2=BD2时,讨论即可求得m的值.
试题解析:(1)y=mx2-2mx-3m=m(x-3)(x+1),
∵m≠0,
∴当y=0时,x1=-1,x2=3,
∴A(-1,0),B(3,0);
(2)设C1:y=ax2+bx+c,将A、B、C三点的坐标代入得:
,解得
故C1:y=x2-x-
依题意,设点P的坐标为(n,n2-n-)(0<n<3)
则SPBC=SPOC+SBOP-SBOC =××n+×3×(-n2+n+)-×3×
=-(n-)2+
∵-<0,
∴当n=时SPBC的最大值是
(3)y=mx2-2mx-3m=m(x-1)2-4m,顶点M坐标(1,-4m),
当x=0时,y=-3m,
∴D(0,-3m),B(3,0),
∴DM2=(0-1)2+(-3m+4m)2=m2+1,
MB2=(3-1)2+(0+4m)2=16m2+4,
BD2=(3-0)2+(0+3m)2=9m2+9,
当△BDM为Rt△时有:DM2+BD2=MB2或DM2+MB2=BD2
①DM2+BD2=MB2时有:m2+1+9m2+9=16m2+4,
解得m=-1(∵m<0,∴m=1舍去);
②DM2+MB2=BD2时有:m2+1+16m2+4=9m2+9,
解得m=-(m=舍去).
综上,m=-1或-时,△BDM为直角三角形.
考点: 二次函数综合题.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知,等边△ABC边长为6,P为BC边上一点,且BP=4,点E、F分别在边AB、AC上,且∠EPF=60°,设BE=x,CF=y.
(1)求y与x的函数关系式,并写出x的取值范围;
(2)①若四边形AEPF的面积为时,求x的值.
②四边形AEPF的面积是否存在最大值?若存在,请求出面积的最大值及此时x的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,O是坐标原点,点A的坐标是(-2,4),过点A作AB⊥y轴,垂足为B,连接OA.

(1)求△OAB的面积;
(2)若抛物线y=-x2-2x+c经过点A.
①求c的值;
②将抛物线向下平移m个单位,使平移后得到的抛物线顶点落在△OAB的内部(不包括△OAB的边界),求m的取值范围(直接写出答案即可).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,点A坐标为(-2,0),点B坐标为(0,2),点E为线段AB上的动点(点E不与点A,B重合),以E为顶点作∠OET=45°,射线ET交线段OB于点F,C为y轴正半轴上一点,且OC=AB,抛物线y=x2+mx+n的图象经过A,C两点.

(1)求此抛物线的函数表达式;
(2)求证:∠BEF=∠AOE;
(3)当△EOF为等腰三角形时,求此时点E的坐标;
(4)在(3)的条件下,当直线EF交x轴于点D,P为(1)中抛物线上一动点,直线PE交x轴于点G,在直线EF上方的抛物线上是否存在一点P,使得△EPF的面积是△EDG面积的()倍.若存在,请直接写出点P坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线y=与x轴交于点A,与y轴交于点C,以AC为直径作⊙M,点是劣弧AO上一动点(点与不重合).抛物线y=-经过点A、C,与x轴交于另一点B,

(1)求抛物线的解析式及点B的坐标;
(2)在抛物线的对称轴上是否存在一点P,是︱PA—PC︱的值最大;若存在,求出点P的坐标;若不存在,请说明理由。
(3)连于点,延长,使,试探究当点运动到何处时,直线与⊙M相切,并请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,二次函数的图象,记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;……如此进行下去,直至得C14. 若P(27,m)在第14段图象C14上,则m=       

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

某一型号飞机着陆后滑行的距离y(单位:m)与滑行时间x(单位:s)之间的函数关系式是y=60x-1.5x2,该型号飞机着陆后滑行________m才能停下来.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知抛物线经过点A(-5,0)、B(1,0),且顶点的纵坐标为,则二次函数的解析式是________.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,正方形ABCD边长是16 cm,P是AB上任意一点(与A、B不重合),QP⊥DP.设AP="x" cm,BQ="y" cm.试求出y与x之间的函数关系式.

查看答案和解析>>

同步练习册答案