精英家教网 > 初中数学 > 题目详情
如图,矩形ABCD的顶点A、D在抛物线y=-
2
3
x2+
8
3
x
上,B、C在x轴的正半轴上,且矩形始终在抛物线与x轴围成的区域里.
(1)设点A的横坐标为x,试求矩形的周长P关于变量x的函数表达式;
(2)当点A运动到什么位置时,相应矩形的周长最大?最大周长是多少?
(3)在上述这些矩形中是否存在这样一个矩形,它的周长为7?若存在,求出该矩形的各顶点的坐标;若不存在,说明理由.
(1)令y=0,得-
2
3
x2+
8
3
x=0

解得x1=0,x2=4,
∴E(4,0);(2分)
P=2[-
2
3
x2+
8
3
x+(4-2x)]
=-
4
3
x2+
4
3
x+8
,(2分)
即P=-
4
3
x2+
4
3
x+8


(2)∵P=-
4
3
x2+
4
3
x+8=-
4
3
(x-
1
2
)2+
25
3
(2分)
∴当x=
1
2
时,P的最大值为
25
3
;(2分)
故当点A运动到(
1
2
7
6
)时,矩形的周长最大,且最大值为
25
3


(3)存在;(1分)
当P=7时,得-
4
3
x2+
4
3
x+8=7

即4x2-4x-3=0,
解得x1=-
1
2
x2=
3
2
;(1分)
∵0<x<2,
x=
3
2

x=
3
2
时,y=
5
2

B(
3
2
,0)
C(
5
2
,0)
D(
5
2
5
2
)
.(2分)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知过坐标原点的抛物线经过A(x1,0),B(x2,3)两点,且x1、x2是方程x2+5x+6=0两根(x1>x2),抛物线顶点为C.
(1)求抛物线的解析式;
(2)若点D在抛物线上,点E在抛物线的对称轴上,且以A、O、D、E为顶点的四边形是平行四边形,求点E的坐标;
(3)P是抛物线上的动点,过点P作PM⊥x轴,垂足为M,是否存在点P使得以点P、M、O为顶点的三角形与△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在矩形ABCD中,AB=2,AD=4,以AB的垂直平分线为x轴,AB所在的直线为y轴,建立如图所示的平面直角坐标系.
(1)求点的坐标:A______,B______,C______,______,AD的中点E______;
(2)求以E为顶点,对称轴平行于y轴,并且经过点B,C的抛物线的解析式;
(3)求对角线BD与上述抛物线除点B以外的另一交点P的坐标;
(4)△PEB的面积S△PEB与△PBC的面积S△PBC具有怎样的关系?证明你的结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,抛物线y=ax2-3ax+b经过A(-1,0),C(3,2)两点,与y轴交于点D,与x轴交于另一点B.
(1)求此抛物线的解析式;
(2)若直线y=kx-1(k≠0)将四边形ABCD面积二等分,求k的值;
(3)如图2,过点E(1,-1)作EF⊥x轴于点F,将△AEF绕平面内某点旋转180°后得△MNQ(点M,N,Q分别与点A,E,F对应),使点M,N在抛物线上,求点M,N的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,在平面直角坐标系中,AB、CD都垂直于x轴,垂足分别为B、D,AD与BC相交于E点,已知:A(-2,-6),C(1,-3),一抛物线经过A,E,C三点.
(1)求点E的坐标及此抛物线的表达式;
(2)如图2,如果AB位置不变,将DC向右平移k(k>0)个单位,求△AEC的面积S关于k的函数表达式;
(3)在第(2)问中,是否存在k的值,使AD⊥BC?如果存在,求出k的值;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,矩形ABCD中,AB=6cm,AD=3cm,点E在边DC上,且DE=4cm.动点P从点A开始沿着A?B?C?E的路线以2cm/s的速度移动,动点Q从点A开始沿着AE以1cm/s的速度移动,当点Q移动到点E时,点P停止移动.若点P、Q同时从点A同时出发,设点Q移动时间为t(s),P、Q两点运动路线与线段PQ围成的图形面积为S(cm2),求S与t的函数关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,以△ABC的边AC为直径的半圆交AB于D,三边长a,b,c能使二次函数y=
1
2
(c+a)x2-bx+
1
2
(c-a)
的顶点在x轴上,且a是方程z2+z-20=0的一个根.
(1)证明:∠ACB=90°;
(2)若设b=2x,弓形面积S弓形AED=S1,阴影部分面积为S2,求(S2-S1)与x的函数关系式;
(3)在(2)的条件下,当b为何值时,(S2-S1)最大?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

定义[a,b,c]为函数y=axw+bx+c的特征数,下面给出特征数为[wm,1-m,-1-m]的函数的一些结论:
①当m=-3时,函数图象的顶点坐标是(
1
3
8
3
);
②当m>大时,函数图象截x轴所得的线段长度大于
3
w

③当m<大时,函数在x>
1
时,y随x的增大而减我;
④当m≠大时,函数图象经过x轴上一一定点.
其1正确的结论有______.(只需填写序号)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,某中学生推铅球,铅球在点A处出手,在点B处落地,它的运行路线满足y=-
1
12
x2+
2
3
x+
5
3
,则这个学生推铅球的成绩是______米.

查看答案和解析>>

同步练习册答案