精英家教网 > 初中数学 > 题目详情
3.如图,已知AB∥CD,BC平分∠ABE,∠C=30°,则∠CEF的度数是(  )
A.30°B.45°C.60°D.75°

分析 先根据平行线的性质得∠ABC=∠C=30°,再根据角平分线定义得∠ABF=2∠ABC=70°,然后根据两直线平行,同位角相等可得∠CEF=∠ABF=70°.

解答 解:∵AB∥CD,
∴∠ABC=∠C=30°,
∵BC平分∠ABE,
∴∠ABF=2∠ABC=60°,
∵AB∥CD,
∴∠CEF=∠ABF=60°.
故选C.

点评 本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

13.如图1,四边形ABCD为⊙O内接四边形,连接AC、CO、BO,点C为弧BD的中点.
(1)求证:∠DAC=∠ACO+∠ABO;
(2)如图2,点E在OC上,连接EB,延长CO交AB于点F,若∠DAB=∠OBA+∠EBA.求证:EF=EB;
(3)在(2)的条件下,如图3,若OE+EB=AB,CE=2,AB=13,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.关于x的一元二次方程ax2-3x+3=0有两个不等实根,则a的取值范围是(  )
A.a<$\frac{3}{4}$且a≠0B.a>-$\frac{3}{4}$且a≠0C.a>-$\frac{3}{4}$D.a<$\frac{3}{4}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,在Rt△ABC中,∠C=90°,sinA=$\frac{4}{5}$,AB=10,点O为AC上一点,以OA为半径作⊙O交AB于点D,BD的中垂线分别交BD,BC于点E,F,连结DF.
(1)求证:DF为⊙O的切线;
(2)若AO=x,DF=y,求y与x之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.探索与计算:
在△ABC中,BE⊥AC于点E,CD⊥AB于点D,连接DE.
(1)如图1,若∠A=45°,AB=AC,BC=4,求DE的长.
(2)如图2,若∠A=60°,AB与AC不相等,BC=4,求DE的长.
猜想与证明:
(3)根据(1)(2)所求出的结果,猜想DE、BC以及∠A之间的数量关系,并证明.
拓展与应用:
(4)如图3,在△ABC中,AB=BC=5,AC=2$\sqrt{5}$,BE⊥AC于点E,CD⊥AB于点D,AF⊥BC于点F,求△DEF的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.下列运算正确的是(  )
A.a2•a4=a6B.(a24=a4C.3(a-b)=3a-bD.a-b2=a2-ab+b2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.下列运算正确的是(  )
A.2a2+a3=2a5B.2a2•a3=2a6C.(-2a23=-8a5D.(-2a32=4a6

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.如图AB∥DE,∠ABC=30°,∠BCD=80°,则∠CDE=(  )
A.20°B.50°C.60°D.100°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,在△ABC中,∠C=90°,D,F是AB边上的两点,以DF为直径的⊙O与BC相交于点E,连接EF,∠OFE=$\frac{1}{2}$∠A.
(1)求证:BC是⊙O的切线;
(2)若sinB=$\frac{1}{2}$,求∠FEC.

查看答案和解析>>

同步练习册答案