【题目】在一条不完整的数上从左到右有点A,B,C,其中点A到点B的距离为3,点C到点B的距离为7,如图所示,设点A,B,C所对应的数的和是.
(1)若以点B为原点,则点C所对应的数是 ,若以点C的原点,则的值是 .
(2)若原点O在图中数轴上,且点C到原点的距离为4,求的值.
(3)动点P从点A出发,以每秒2个单位长度的速度向终点C移动,动点Q从点B出发,以每秒1个单位长度的速度向终点C移动,秒后,P,Q两点间距离为2?(请直接写出答案) .
【答案】(1)7,-17;(2);;(3)t=1或5.
【解析】
(1)根据已知点A到点B的距离为3和点C到点B的距离为7求出即可;
(2)分为两种情况,当O在C的左边时,当O在C的右边时,求出每种情况A、B、C对应的数,即可求出m;
(3)分为两种情况,当P在Q的左边时,当P在Q的左边时,假如C为原点,求出P、Q对应的数,列出算式,即可求出t.
(1)(1)当B为原点时,点C对应的数是7;当以C为原点时,A、B对应的数分别为-7,-10,m=-10+(-7)+0=-17,
故答案为:7,-17;
(2)若点C在原点的左边,则,,
若点C在原点的右边,则,,
(3)假如以C为原点,则A、B、C对应的数为-10,-7,0,Q对应的数是-(7-t),P对应的数是-(10-2t),
当P在Q的左边时,[-(7-t)]-[-(10-2t)]=2,
解得:t=1
当P在Q的左边时,[-(10-2t)]-[-(7-t)]=2,
解得:t=5,
即当1秒或5秒后,P、Q两点间的距离为2.
故答案为:t=1或5.
科目:初中数学 来源: 题型:
【题目】某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.
不妨设该种品牌玩具的销售单价为x元,请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把结果填写在表格中:
销售单价元 | x |
销售量件 | ______ |
销售玩具获得利润元 | ______ |
在问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元.
在问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,过点O作OE∥AB,交BC于E.
(1)求证:ED为⊙O的切线;
(2)如果⊙O的半径为,ED=2,延长EO交⊙O于F,连接DF、AF,求△ADF的面积.
【答案】(1)证明见解析;(2)
【解析】试题分析:(1)首先连接OD,由OE∥AB,根据平行线与等腰三角形的性质,易证得≌ 即可得,则可证得为的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OE∥AB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得与的长,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
试题解析:(1)证明:连接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切线;
(2)连接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直径,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面积为
【题型】解答题
【结束】
25
【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.
(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);
(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;
(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】观察下列等式,并解答问题:
①;
②;
③;……
(1) .
(2)运用公式求的结果;
(3)小明喜欢阅读《海底两万里》这本书,书的页码是连续的正整数1,2,3,4,……9,10,又一次他将已经读过的页码按照顺序相加时,不小心把其中一个页码加了两次,结果和恰好等于2018,则加了两次的页码是第 页
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在数轴上有三个点A、B、C,完成系列问题:
(1)将点B向右移动六个单位长度到点D,在数轴上表示出点D.
(2)在数轴上找到点E,使点E到A、C两点的距离相等.并在数轴上标出点E表示的数.
(3)在数轴上有一点F,满足点F到点A与点F到点C的距离和是9,则点F表示的数是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司新研发一种办公室用壁挂式电磁日历,底板是一块长方形磁块,再用31枚圆柱形小铁片标上数字吸附在底板上作为日期,如图1是2007年10月份日历
(1)用长方形和正方形分别圈出相邻的3个数和9个数,若设圈出的数的中心数为a,用含a的整式表示这3个数的和与9个数的和,结果分别为 , .
(2)用某种图形圈出相邻的5个数,使这5个数的和能表示成5a的形式,请在图2中画出一个这样的图形.
(3)用平行四边形圈出相邻的四个数,是否存在这样的4个数使得a+b+c+d=114?如果存在就求出来,不存在说明理由.
(4)第一次翻动31枚日历铁片,第二次翻动其中的30枚,第三次翻动其中的29枚,……,第31次只翻动其中的一枚,按这样的方法翻动日历铁片,能否使铁板上所有的31枚铁片原来有数字的一面都朝下,试通过计算证明你的判断.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:∠AOB=90°,∠COD=20°,OM平分∠AOC,ON平分∠BOD.
(1)如图1,∠COD在∠AOB内部,且∠AOC=30°.则∠MON的大小为 .
(2)如图1,∠COD在∠AOB内部,若∠AOC的度数未知,是否能求出∠MON的大小,若能,写出你的解答过程;若不能,说明理由.
(3)如图2,∠COD在∠AOB外部(OM在OD上方,∠BOC180°),试求出∠MON的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知R t△ABC,∠ABC=90°,以直角边AB为直径作O,交斜边AC于点D,连结BD.
(1)若AB=3,BC=4,求边BD的长;
(2)取BC的中点E,连结ED,试证明ED与⊙O相切.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com