精英家教网 > 初中数学 > 题目详情
如图,矩形纸片ABCD的边长AB=4,AD=2.将矩形纸片沿EF折叠,使点A与点C重合,折叠后在其一面着色.
(1)GC的长为
2
2

(2)求FG的长.
(3)求阴影部分面积.
(4)若点P为EF边上的中点,则CP的长为
5
5
分析:(1)根据图形折叠不变性的性质可知AD=CG,
(2)根据图形折叠不变性的性质可知DF=FG,AE=CE,设DF=x,连接AC,再由EF是折痕可知EF垂直平分AC,故DF=FG=x,在Rt△FCG中,利用勾股定理即可求解;
(3)由(2)可知,CF=AE,故DF=BE,可知着色面积为矩形ABCD面积的一半与△CGF面积的和;
(4)若P为EF边上的中点,则CP=
1
2
AC,利用勾股定理即可求解.
解答:解:(1)图形折叠不变性的性质可知:
∵AD=2,
∴GC=2;
故答案为:2;

(2)图形折叠不变性的性质可知AD=GC,DF=GF,AE=CE,设DF=x,则FG=x,FC=4-x,
∵GC=2,
在Rt△FCG中,FC2=FG2+GC2
即(4-x)2=x2+22
解得x=
3
2

即FG=
3
2


(3))∵CF=AE,
∴DF=BE,
∴S阴影部分=S四边形BCFE+S△CGF
=
1
2
S矩形ABCD+S△CGF
=
1
2
×AB•AD+
1
2
CG•GF,
=
1
2
×4×2+
1
2
×2×
3
2

=4+
3
2

=
11
2


(4)在Rt△ADC中,AC=
AD2+CD2
=
22+42
=2
5

∵P是EF的中点,P是AC的中点,
∴PC=
1
2
AC=
1
2
×2
5
=
5

故答案为:
5
点评:本题考查的是图形折叠的性质,即折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,矩形纸片ABCD中,AB=4,BC=4
3
,将矩形沿对角线AC剪开,解答以下问题:
(1)在△ACD绕点C顺时针旋转60°,△A1CD1是旋转后的新位置(图A),求此AA1的距离;
(2)将△ACD沿对角线AC向下翻折(点A、点C位置不动,△ACD和△ABC落在同一平面内),△ACD2是翻折后的新位置(图B),求此时BD2的距离;
(3)将△ACD沿CB向左平移,设平移的距离为x(0≤x≤4
3
),△A2C1D3是平移后的新位置(图C),若△ABC与△A2C1D3重叠部分的面积为y,求y关于x的函数关系式.
精英家教网精英家教网精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,矩形纸片ABCD中AB=6cm,BC=10cm,小明同学先折出矩形纸片ABCD的对角线AC,再分别精英家教网把△ABC、△ADC沿对角线AC翻折交AD、BC于点F、E.
(1)判断小明所折出的四边形AECF的形状,并说明理由;
(2)求四边形AECF的面积.

查看答案和解析>>

科目:初中数学 来源:第2章《二次函数》中考题集(37):2.7 最大面积是多少(解析版) 题型:解答题

如图,矩形纸片ABCD中,AB=4,BC=4,将矩形沿对角线AC剪开,解答以下问题:
(1)在△ACD绕点C顺时针旋转60°,△A1CD1是旋转后的新位置(图A),求此AA1的距离;
(2)将△ACD沿对角线AC向下翻折(点A、点C位置不动,△ACD和△ABC落在同一平面内),△ACD2是翻折后的新位置(图B),求此时BD2的距离;
(3)将△ACD沿CB向左平移,设平移的距离为x(0≤x≤4),△A2C1D3是平移后的新位置(图C),若△ABC与△A2C1D3重叠部分的面积为y,求y关于x的函数关系式.


查看答案和解析>>

科目:初中数学 来源:第25章《图形的变换》中考题集(30):25.3 轴对称变换(解析版) 题型:解答题

如图,矩形纸片ABCD中,AB=4,BC=4,将矩形沿对角线AC剪开,解答以下问题:
(1)在△ACD绕点C顺时针旋转60°,△A1CD1是旋转后的新位置(图A),求此AA1的距离;
(2)将△ACD沿对角线AC向下翻折(点A、点C位置不动,△ACD和△ABC落在同一平面内),△ACD2是翻折后的新位置(图B),求此时BD2的距离;
(3)将△ACD沿CB向左平移,设平移的距离为x(0≤x≤4),△A2C1D3是平移后的新位置(图C),若△ABC与△A2C1D3重叠部分的面积为y,求y关于x的函数关系式.


查看答案和解析>>

科目:初中数学 来源:2007年全国中考数学试题汇编《二次函数》(06)(解析版) 题型:解答题

(2007•益阳)如图,矩形纸片ABCD中,AB=4,BC=4,将矩形沿对角线AC剪开,解答以下问题:
(1)在△ACD绕点C顺时针旋转60°,△A1CD1是旋转后的新位置(图A),求此AA1的距离;
(2)将△ACD沿对角线AC向下翻折(点A、点C位置不动,△ACD和△ABC落在同一平面内),△ACD2是翻折后的新位置(图B),求此时BD2的距离;
(3)将△ACD沿CB向左平移,设平移的距离为x(0≤x≤4),△A2C1D3是平移后的新位置(图C),若△ABC与△A2C1D3重叠部分的面积为y,求y关于x的函数关系式.


查看答案和解析>>

同步练习册答案