分析 (1)根据三角形的外心是三角形三边垂直平分线的交点解答;
(2)连接OM,作MN⊥DE于N,根据勾股定理求出DN,根据垂径定理求出DE.
解答 解:(1)∵B(-6,-4),C(2,-4),
∴线段BC的垂直平分线是x=-2,
∵A(2,2),C(2,-4),
∴线段AC的垂直平分线是y=-1,
∴△ABC的外接圆的圆心M的坐标为:(-2,-1);
(2)连接OM,作MN⊥DE于N,
由题意得,AC=6,BC=8,
由勾股定理得,AB=10,
则DN=$\sqrt{O{D}^{2}-O{N}^{2}}$=2$\sqrt{6}$,
由垂径定理得,DE=2DN=4$\sqrt{6}$.
点评 本题考查的是三角形的外接圆和外心,掌握三角形的外心的概念、垂径定理的应用是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | -2a | B. | -2b | C. | -2a-2b | D. | 2a-2b |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com