精英家教网 > 初中数学 > 题目详情
正方形四条边都相等,四个角都是90°,如图,已知正方形ABCD在直线MN的上方,BC在直线MN上,点E是BC上一点,以AE为边在BC所在的直线MN的上方作正方形AEFG.
(1)判断△ADG与△ABE是否全等,并说明理由;
(2)过点F作FH⊥MN,垂足为点H,观察并猜测线段FH与线段CH的数量关系,并说明理由.
(1)△ADG≌△ABE.
∵四边形ABCD和四边形AEFG是正方形,
∴AB=AD,AE=AG,∠ABE=∠ADG=90°,
∴∠BAE+∠EAD=∠DAG+∠EAD,
∴∠BAE=∠DAG,
在△ADG和△ABE中,
AD=AB
∠DAG=∠BAE
AG=AE

∴△ADG≌△ABE;

(2)FH=CH.
由(1)可得∠FEH=∠BAE=∠DAG,
在Rt△EFH和Rt△AGD中,
∠FEH=∠GAD
∠FHE=∠GDA
EF=AG

∴△EFH≌△AGD,
∴EH=AD=BC,FH=GD=BE,
∴BC-EC=EH-EC,即BE=CH,
∴FH=CH.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,梯形ABCD中,如果ABCD,AB=BC,∠D=60°,AC丄AD,则∠B=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知四边形ABCD各边中点分别E,F,G,H,如果四边形ABCD是______,那么四边形EFGH是正方形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,等腰Rt△CEF的斜边CE在正方形ABCD的边BC的延长线上,CF>BC,取线段AE的中点M.
(1)求证:MD=MF,MD⊥MF
(2)若Rt△CEF绕点C顺时针旋转任意角度(如图2),其他条件不变.(1)中的结论是否仍然成立,若成立,请证明,若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,等腰直角△ABC腰长为a,现分别按图1,图2方式在△ABC内内接一个正方形ADFE和正方形PMNQ.设△ABC的面积为S,正方形ADFE的面积为S1,正方形PMNQ的面积为S2

(1)在图1中,求AD:AB的值;在图2中,求AP:AB的值;
(2)比较S1+S2与S的大小.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在正方形ABCD中,点F在AD延长线上,且DF=DC,M为AB边上一点,N为MD的中点,点E在直线CF上(点E、C不重合).
(1)如图1,点M、A重合,E为CF的中点,试探究BN与NE的位置关系及
BM
CE
的值,并证明你的结论;
(2)如图2,点M、A不重合,BN=NE,你在(1)中得到的两个结论是否仍然成立?若成立,加以证明;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知四边形ABCD是正方形,点E、F、G、H分别在AB、BC、CD、和DA上,连接EG和FH小明和小亮对这个图形进行探索,发现了很多有趣的东西,同时他俩又进一步猜想
小明说:如果EG和HF互相垂直,那么EG和HF一定相等;
小亮说:如果EG和HF相等,那么EG和HF一定互相垂直;
请你对小明和小亮的猜想进行判断,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

边长为2cm的正方形,对角线的长为______cm.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,正三角形和正方形的面积分别为10,6,两阴影部分的面积分别为a,b(a>b),则(a-b)等于______.

查看答案和解析>>

同步练习册答案