精英家教网 > 初中数学 > 题目详情

【题目】在△ABC中,点D是AB边上一点(不与AB重合),AD=kBD,过点D作∠EDF+∠C=180°,与CA、CB分别交于E、F.
(1)如图1,当DE=DF时,求的值.
(2)如图2,若∠ACB=90°,∠B=30°,DE=m,求DF的长(用含k,m的式子表示)

【答案】解:(1)如图1,连接CD,
∵∠EDF+∠C=180°,
∴D,E,C,F四点共圆,
∵DE=DF,
∴∠DCE=∠DCF,
根据正弦定理得 ①,

,②,
∵∠ADC=180°﹣∠BDC,
∴sin∠ADC=sin∠BDC,
①÷②d得,
∵AD=kBD,
=k;
(2)∵∠ACB=90°,∠B=30°,
∴∠A=60°,
根据正弦定理得: ③,,④,
由(1)知D,E,C,F四点共圆,
∴∠DEA+∠DFB=180°,
∴sin∠DEA=sin∠DFB,④÷③得:
∴DF=
∵AD=kBD,DE=m,
∴DF=

【解析】(1)连接CD,由∠EDF+∠C=180°,推出D,E,C,F四点共圆,根据正弦定理得 ①, , ②,①÷②得, , 根据AD=kBD,根据得到结论;
(2)根据三角形的内角和得到∠A=60°,根据正弦定理得: ③, , ④,④÷③得: , 求得DF= , 即可得到结论.
【考点精析】根据题目的已知条件,利用相似三角形的判定与性质的相关知识可以得到问题的答案,需要掌握相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图是同一时刻学校里一棵树和旗杆的影子,如果树高为3米,测得它的影子长为1.2米,旗杆的高度为5米,则它的影子长为(

A.4米
B.2米
C.1.8米
D.3.6米

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,点A,B的坐标分别为(2,m),(2,3m﹣1),若线段AB与抛物线y=x2﹣2x+2相交,则m的取值范围为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一个不透明的箱子里,装有黄、白、黑各一个球,它们除了颜色之外没有其他区别,随机从箱子里取出1个球,放回搅匀再取一次,请你用画树状图或列表的方法表示所有可能出现的结果,求两次取出的都是白球的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列变形中:

①由方程=2去分母,得x﹣12=10;

②由方程x=两边同除以,得x=1;

③由方程6x﹣4=x+4移项,得7x=0;

④由方程2﹣两边同乘以6,得12﹣x﹣5=3(x+3).

错误变形的个数是(  )个

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知⊙P的半径为2,圆心P在抛物线y=x2﹣1上运动,当⊙P与x轴相切时,圆心P的坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,请思考怎样把每个三角形纸片只剪一次,将它分成两个等腰三角形,试一试,在图中画出裁剪的痕迹.

(1)      (2)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】完成下面的证明

如图,端点为P的两条射线分别交两直线l1、l2A、C、B、D四点,已知∠PBA=PDC,l=PCD,求证:∠2+3=180°.

证明:∵∠PBA=PDC(   

   (同位角相等,两直线平行)

∴∠PAB=PCD(   

∵∠1=PCD(   

   (等量代换)

∴PC//BF(内错角相等,两直线平行),

∴∠AFB=2(   

∵∠AFB+3=180°(   

∴∠2+3=180°(等量代换)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,OAC上一个动点,过点O作直线MNBC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F.

1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论;

3)若AC边上存在点O,使四边形AECF是正方形且,求∠B的大小.

查看答案和解析>>

同步练习册答案