精英家教网 > 初中数学 > 题目详情

【题目】我市在党中央实施“精准扶贫”政策的号召下,大力开展科技扶贫工作,帮助农民组建农副产品销售公司,某农副产品的年产量不超过100万件,该产品的生产费用y(万元)与年产量x(万件)之间的函数图象是顶点为原点的抛物线的一部分(如图所示);该产品的销售单价z(元/件)与年销售量x(万件)之间的函数图象是如图所示的一条线段,生产出的产品都能在当年销售完,达到产销平衡,所获毛利润为W万元.(毛利润=销售额﹣生产费用)

(1)请直接写出y与x以及z与x之间的函数关系式;(写出自变量x的取值范围)

(2)求W与x之间的函数关系式;(写出自变量x的取值范围);并求年产量多少万件时,所获毛利润最大?最大毛利润是多少?

(3)由于受资金的影响,今年投入生产的费用不会超过360万元,今年最多可获得多少万元的毛利润?

【答案】(1)y=x2.z=﹣x+30(0≤x≤100);(2)年产量为75万件时毛利润最大,最大毛利润为1125万元;(3)今年最多可获得毛利润1080万元

【解析】

1)利用待定系数法可求出yx以及zx之间的函数关系式;(2)根据(1)的表达式及毛利润销售额﹣生产费用,可得出wx的函数关系式,再利用配方法求出最值即可;(3)首先求出x的取值范围,再利用二次函数增减性得出答案即可.

(1)图①可得函数经过点(100,1000),

设抛物线的解析式为yax2a≠0),

将点(100,1000)代入得:1000=10000a

解得:a

yx之间的关系式为yx2

图②可得:函数经过点(0,30)、(100,20),

zkxb,则

解得:

zx之间的关系式为z=﹣x+30(0≤x≤100);

(2)Wzxy=﹣x2+30xx2

=﹣x2+30x

=﹣x2﹣150x

=﹣x﹣75)2+1125,

<0,

∴当x=75时,W有最大值1125,

∴年产量为75万件时毛利润最大,最大毛利润为1125万元;

(3)令y=360,得x2=360,

解得:x=±60(负值舍去),

由图象可知,当0<y≤360时,0<x≤60,

W=﹣x﹣75)2+1125的性质可知,

0<x≤60时,Wx的增大而增大,

故当x=60时,W有最大值1080,

答:今年最多可获得毛利润1080万元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图(1)是某河上一座古拱桥的截面图,拱桥桥洞上沿是抛物线形状,抛物线两端点与水面的距离都是1m,拱桥的跨度为10m,桥洞与水面的最大距离是5m,桥洞两侧壁上各有一盏距离水面4m的景观灯.现把拱桥的截面图放在平面直角坐标系中,如图(2).

求(1)抛物线的解析式;

(2)两盏景观灯P1、P2之间的水平距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC的三边分别切⊙OD,E,F.

(1)若∠A=40°,求∠DEF的度数;

(2)AB=AC=13,BC=10,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲乙两位老师同住一小区,该小区与学校相距.甲从小区步行去学校,出发分钟后乙再出发,乙从小区先骑公共自行车,骑行若干米到达还车点后,立即步行走到学校.已知乙骑车的速度为/分,甲步行的速度比乙步行的速度每分钟快.设甲步行的时间为(分),图1中线段与折线分别表示甲、乙离小区的路程(米)与甲步行时间(分)的函数关系的图象;图2表示甲、乙两人之间的距离(米)与甲步行时间 (分)的函数关系的图象(不完整),根据图1和图2中所给的信息,解答下列问题:

1)求甲步行的速度和乙出发时甲离开小区的路程;

2)求直线的解析式;

3)在图2中,画出当时,关于的函数的大致图象.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O的直径AD长为6,AB是弦,CDAB,A=30°,CD=

(1)求∠C的度数;

(2)求证:BC是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:

1

2)(﹣a6x5y4)÷(﹣3a2xy2)×(﹣ax2

3[x2y2+x2y)(x+2y)﹣2x2xy]÷2x

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形中,,将矩形绕点旋转得到矩形,使点的对应点落在上,于点,在上取点,使

(1)证:

(2)的度数.

(3)知,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知正方形ABCD的边CD在正方形DEFG的边DE上,连接AEGC

1)试猜想AEGC有怎样的位置关系,并证明你的结论;

2)将正方形DEFG绕点D按顺时针方向旋转,使点E落在BC边上,如图2,连接AEGC.你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(问题情境)如图①,在△ABC中,若AB=10AC=6,求BC边上的中线AD的取值范围.

1)(问题解决)延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把ABAC2AD集中在△ABE中,利用三角形三边的关系即可判断出中线AD的取值范围是   

(反思感悟)解题时,条件中若出现中点中线字样,可以考虑构造以该中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同个三角形中,从而解决问题.

2)(尝试应用)如图②,△ABC中,∠BAC=90°ADBC边上的中线,试猜想线段ABACAD之间的数量关系,并说明理由.

3)(拓展延伸)如图③,△ABC中,∠BAC=90°DBC的中点,DMDNDMAB于点MDNAC于点N,连接MN.当BM=4MN=5AC=6时,请直接写出中线AD的长.

查看答案和解析>>

同步练习册答案