6£®Ä³Ð£°ËÄ꼶ѧÉú¿ªÕ¹Ìßë¦×Ó±ÈÈü»î¶¯£¬Ã¿°àÅÉ5ÃûѧÉú²Î¼Ó£¬°´ÍÅÌå×Ü·Ö¶àÉÙÅÅÁÐÃû´Î£¬Ôڹ涨ʱ¼äÿÈËÌß100¸öÒÔÉÏ£¨º¬100¸ö£©ÎªÓÅÐ㣬ϱíÊdzɼ¨×îºÃµÄ¼×°àºÍÒÒ°à5ÃûѧÉúµÄ±ÈÈüÊý¾Ý£¨µ¥Î»£º¸ö£©£¬¾­Í³¼Æ·¢ÏÖÁ½°à×Ü·ÖÏàµÈ£¬´ËʱÓÐѧÉú½¨Ò飬¿Éͨ¹ý¿¼²éÊý¾ÝÖеÄÆäËûÐÅÏ¢×÷Ϊ²Î¿¼£¬ÇëÄã»Ø´ðÏÂÁÐÎÊÌ⣺
1ºÅ2ºÅ3ºÅ4ºÅ5ºÅ×Ü·Ö
 ¼×°à 10098 110  89 103500 
ÒÒ°à  86100 98 119  97500 
£¨1£©¸ù¾ÝÉϱíÌṩµÄÊý¾ÝÌîдÏÂ±í£º
  ÓÅÐãÂÊ ÖÐλÊý ·½²î
¼×°à 60% 100 46.8
ÒÒ°à 40% 98114
£¨2£©¸ù¾ÝÒÔÉÏÐÅÏ¢£¬ÄãÈÏΪӦ¸Ã°Ñ¹Ú¾ü½±×´·¢¸øÄÄÒ»¸ö°à¼¶£¿¼òÊöÀíÓÉ£®
ÓÑÇéÌáʾ£ºÒ»×éÊý¾ÝµÄ·½²î¼ÆË㹫ʽÊÇS2=$\frac{1}{n}$[£¨x1-x£©2+£¨x2-x£©2+¡­+£¨xn-x£©2]£¬ÆäÖÐ$\overline{x}$Ϊn¸öÊý¾Ýx1£¬x2£¬¡­£¬xnµÄƽ¾ùÊý£®

·ÖÎö £¨1£©¸ù¾Ý¸ø³öµÄÊý¾ÝÇó³öÓÅÐãÂÊ£¬¸ù¾ÝÖÐλÊýµÄ¸ÅÄîºÍ·½²î¹«Ê½¼ÆËã¼´¿É£»
£¨2£©¸ù¾ÝÖÐλÊýµÄÐÔÖʺͷ½²îµÄÐÔÖʽâ´ð¼´¿É£®

½â´ð ½â£º£¨1£©¼×°àµÄÓÅÐãÂÊΪ£º3¡Â5¡Á100%=60%£¬
ÒÒ°àµÄÓÅÐãÂÊΪ£º2¡Â5¡Á100%=40%£¬
¼×°àµÄÖÐλÊýΪ100£¬ÒÒ°àµÄÖÐλÊýΪ98£¬
¼×°àµÄƽ¾ùÊýΪ100£¬ÒÒ°àµÄƽ¾ùÊýΪ100£¬
¼×°àµÄ·½²îΪ£º$\frac{1}{5}$[£¨100-100£©2+£¨98-100£©2+£¨110-100£©2+£¨89-100£©2+£¨103-100£©2]=46.8£¬
ÒÒ°àµÄ·½²îΪ£º$\frac{1}{5}$[£¨86-100£©2+£¨100-100£©2+£¨98-100£©2+£¨119-100£©2+£¨97-100£©2]=114£¬
£¨2£©ÒòΪ¼×°àµÄÓÅÐãÂʱȽϸߡ¢ÖÐλÊý´ó£¬·½²îС£¬±È½ÏÎȶ¨£¬
ËùÒÔÓ¦¸Ã°Ñ¹Ú¾ü½±×´·¢¸ø¼Ó°à£®

µãÆÀ ±¾Ì⿼²éµÄÊÇ·½²îµÄ¼ÆËã¡¢ÖÐλÊýµÄÈ·¶¨ºÍƽ¾ùÊýµÄ¼ÆË㣬ÕÆÎÕ·½²îµÄ¼ÆË㹫ʽ£ºS2=$\frac{1}{n}$[£¨x1-x£©2+£¨x2-x£©2+¡­+£¨xn-x£©2]£¬ÆäÖÐ$\overline{x}$Ϊn¸öÊý¾Ýx1£¬x2£¬¡­£¬xnµÄƽ¾ùÊýÊǽâÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®Èçͼ£¬µãFÊÇCD µÄÖе㣬ÇÒAF¡ÍCD£¬BC=ED£¬¡ÏBCD=¡ÏEDC£®
£¨1£©ÇóÖ¤£ºBF=EF£»
£¨2£©ÇóÖ¤£ºAB=AE£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®¼ÆË㣺
£¨1£©$\sqrt{2\frac{2}{3}}$¡Á£¨$\sqrt{1\frac{1}{8}}$-2$\sqrt{15}$£©      
£¨2£©${£¨{3\sqrt{2}-2\sqrt{3}}£©^2}-{£¨{3\sqrt{2}+2\sqrt{3}}£©^2}$
£¨3£©$\sqrt{2}¡Á\sqrt{32}+{£¨{\sqrt{2}-1}£©^2}$
£¨4£©$\frac{1}{3}\sqrt{27{a^3}}-{a^2}\sqrt{\frac{3}{a}}+3\sqrt{\frac{a}{3}}-\frac{4}{3}\sqrt{108a}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®Èçͼ£¬ÔÚÕý·½ÐÎÍø¸ñÖУ¬µãA¡¢B¡¢C¡¢M¡¢N¶¼ÔÚ¸ñµãÉÏ£®
£¨1£©×÷¡÷ABC¹ØÓÚÖ±ÏßMN¶Ô³ÆµÄͼÐΣ»
£¨2£©ÈôÍø¸ñÖÐ×îСÕý·½Ðεı߳¤Îª1£¬Çó¡÷ABCµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®¼ÆË㣺
£¨1£©£¨2015-¦Ð£©0+£¨x-2£©-3¡Â£¨x-1£©•£¨3-1£©
£¨2£©£¨3a-2£©2-2£¨a-1£©£¨a+1£©
£¨3£©ÔËÓÃÕûʽ³Ë·¨¹«Ê½¼ÆË㣺1172-118¡Á116+49¡Á51£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®¼×¡¢ÒÒÁ½È˵½½¼ÍâÂÃÓΣ¬¼×Æï×ÔÐгµ£¬ÒÒÆïµç¶¯³µ£¬ÑØÏàͬ·ÏßÇ°Íù£®Èçͼ£ºl¼×£¬lÒÒ·Ö±ð±íʾ¼×¡¢ÒÒÇ°ÍùÄ¿µÄµØËù×ߵķ³Ìs/ǧÃ×ÓëËùÓõÄʱ¼ät/ʱµÄ¹Øϵ£®
£¨1£©¼×¡¢ÒÒË­Ïȳö·¢£¿Ïȳö·¢¼¸Ð¡Ê±£¿Ë­Ïȵ½Ä¿µÄµØ£¿
£¨2£©¼×ºÍÒÒµÄËٶȷֱðÊǶàÉÙ£¿
£¨3£©Ò»ÈË×·ÉÏÁíÒ»ÈËʱ£¬¾à³ö·¢µã¶àÔ¶£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®½â·½³Ì×飺$\left\{\begin{array}{l}{3{x}^{2}+xy+{y}^{2}=15}\\{3{x}^{2}-31xy+5{y}^{2}=-45}\end{array}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®½â²»µÈʽ×é$\left\{\begin{array}{l}{x+3¡Ü5¢Ù}\\{2x+1£¾3£¨2-x£©¢Ú}\end{array}\right.$£®
£¨¢ñ£©½â²»µÈʽ¢Ù£¬µÃx¡Ü2£»
£¨¢ò£©½â²»µÈʽ¢Ú£¬µÃx£¾1£»
£¨¢ó£©°Ñ²»µÈʽ¢ÙºÍ¢ÚµÄ½â¼¯ÔÚÊýÖáÉϱíʾ³öÀ´£º
£¨¢ô£©Ô­²»µÈʽ×éµÄ½â¼¯Îª1£¼x¡Ü2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®°ÑÏÂÁи÷ʽ·Ö½âÒòʽ£º
£¨1£©-9x2+24x-16                    
£¨2£©x2y2-x2
£¨3£©x2-2x-15                   
£¨4£©a2-b2-6a+6b£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸