【题目】如图,在平面直角坐标系中,将一块腰长为 的等腰直角三角板ABC放在第二象限,且斜靠在两坐标轴上,直角顶点C的坐标为(﹣1,0),点B在抛物线y=ax2+ax﹣2上.
(1)点A的坐标为 , 点B的坐标为;
(2)抛物线的解析式为;
(3)设(2)中抛物线的顶点为D,求△DBC的面积;
(4)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.
【答案】
(1)(0,2);(﹣3,1)
(2)y= x2+ x﹣2
(3)
解:由(2)中抛物线的解析式可知,抛物线的顶点D(﹣ ,﹣ ),
设直线BD的关系式为y=kx+b,将点B、D的坐标代入得:
,
解得 .
∴BD的关系式为y=﹣ x﹣ .
设直线BD和x 轴交点为E,则点E(﹣ ,0),CE= .
∴S△DBC= × ×(1+ )=
(4)
解:假设存在点P,使得△ACP仍然是以AC为直角边的等腰直角三角形:
①若以点C为直角顶点;
则延长BC至点P1,使得P1C=BC,得到等腰直角三角形△ACP1,
过点P1作P1M⊥x轴,
∵CP1=BC,∠MCP1=∠BCF,∠P1MC=∠BFC=90°,
∴△MP1C≌△FBC.
∴CM=CF=2,P1M=BF=1,
∴P1(1,﹣1);
②若以点A为直角顶点;
i)则过点A作AP2⊥CA,且使得AP2=AC,得到等腰直角三角形△ACP2,
过点P2作P2N⊥y轴,同理可证△AP2N≌△CAO,
∴NP2=OA=2,AN=OC=1,
∴P2(2,1),
ii)若以点P为直角顶点.
过P3作P3G⊥y轴于G,
同理,△AGP3≌△CAO,
∴GP3=OA=2,AG=OC=1,
∴P3为(﹣2,3).
经检验,点P1(1,﹣1)与点P2(2,1)都在抛物线y= x2+ x﹣2上,点P3(﹣2,3)不在抛物线上.
故点P的坐标为P1(1,﹣1)与P2(2,1).
【解析】解:(1)∵C(﹣1,0),AC= ,
∴OA= = =2,
∴A(0,2);
过点B作BF⊥x轴,垂足为F,
∵∠ACO+∠CAO=90°,∠ACO+∠BCF=90°,∠BCF+∠FBC=90°,
在△AOC与△CFB中,
∵ ,
∴△AOC≌△CFB,
∴CF=OA=2,BF=OC=1,
∴OF=3,
∴B的坐标为(﹣3,1),
所以答案是:(0,2),(﹣3,1);(2)∵把B(﹣3,1)代入y=ax2+ax﹣2得:
1=9a﹣3a﹣2,
解得a= ,
∴抛物线解析式为:y= x2+ x﹣2.
所以答案是:y= x2+ x﹣2;
【考点精析】本题主要考查了等腰直角三角形和二次函数的图象的相关知识点,需要掌握等腰直角三角形是两条直角边相等的直角三角形;等腰直角三角形的两个底角相等且等于45°;二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点才能正确解答此题.
科目:初中数学 来源: 题型:
【题目】把几个图形拼成一个新的图形,再通过图形面积的计算,常常可以得到一些有用的信息,或可以求出一些不规则图形的面积.
(1)如图1所示,将一张长方形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小长方形,且m>n.观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为 .
(2)若图1中每块小长方形的面积为12cm2,四个正方形的面积和为50 cm2,试求图中所有裁剪线(虚线部分)长之和.
(3)将图2中边长为a和b的正方形拼在一起,B,C,G三点在同一条直线上,连接BD和BF,若这两个正方形的边长满足a+b=10,ab=16,请求出阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,有A、B、C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在( )
A. 在AC、BC两边高线的交点处
B. 在AC、BC两边中线的交点处
C. 在AC、BC两边垂直平分线的交点处
D. 在∠A、∠B两内角平分线的交点处
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“转化”是数学中的一种重要思想,即把陌生的问题转化成熟悉的问题,把复杂的问题转化成简单的问题,把抽象的问题转化为具体的问题.
已知:如图1,线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”,试解答下列问题:
问题一:在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系 ;
问题二:在图2中,若∠D=40°,∠B=36°,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N,试求∠P的度数;
问题三:在图3中,已知AP、CP分别平分∠BAM、∠BCD,请问∠P与∠B、∠D之间存在着怎样的数量关系?并说明理由.
问题四:在图4中,已知AP的反向延长线平分∠EAB,CP平分∠DCF,请直接写出∠P与∠B、∠D之间的数量关系 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知l1∥l2,MN分别和直线l1、l2交于点A、B,ME分别和直线l1、l2交于点C、D,点P在MN上(P点与A、B、M三点不重合).
(1)如果点P在A、B两点之间运动时,∠α、∠β、∠γ之间有何数量关系请说明理由;
(2)如果点P在A、B两点外侧运动时,∠α、∠β、∠γ有何数量关系(只须写出结论).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com