5£®Èçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬¾ØÐÎOABCµÄËĸö¶¥µã×ø±ê·Ö±ðΪO£¨0£¬0£©£¬A£¨4£¬0£©£¬B£¨4£¬3£©£¬C£¨0£¬3£©£¬GÊǶԽÇÏßACµÄÖе㣬¶¯Ö±ÏßMNƽÐÐÓÚACÇÒ½»¾ØÐÎOABCµÄÒ»×éÁÚ±ßÓÚE¡¢F£¬½»yÖá¡¢xÖáÓÚM¡¢N£®ÉèµãMµÄ×ø±êΪ£¨0£¬t£©£®

£¨1£©µ±t=2ʱÇó¡÷EFGµÄÃæ»ýS£»
£¨2£©µ±¡÷EFGΪֱ½ÇÈý½ÇÐÎʱ£¬ÇótµÄÖµ£»
£¨3£©µ±µãG¹ØÓÚÖ±ÏßEFµÄ¶Ô³ÆµãG¡äÇ¡ºÃÂäÔÚ¾ØÐÎOABCµÄÒ»Ìõ±ßËùÔÚÖ±ÏßÉÏʱ£¬Ö±½Óyд³ötµÄÖµ£®

·ÖÎö £¨1£©¡ß¸ù¾Ý¹´¹É¶¨ÀíµÃµ½AC=$\sqrt{42+32}$=5£¬CE=1Èçͼ1£¬Á¬½ÓCF£¬¸ù¾ÝÏàËÆÈý½ÇÐεÄÐÔÖʼ´¿ÉµÃµ½½áÂÛ£»
£¨2£©µ±0£¼t£¼3ʱ£¬°Ñ¡÷EFGÈý±ßµÄƽ·½±íʾ³öÀ´£¬¡÷EFGÊÇÖ±½ÇÈý½ÇÐÎÓÐÈýÖÖ¿ÉÄÜ£¬ÁгöÈý¸ö·½³Ì£¬·Ö±ð½â³ö¼´¿É£¬Í¬Ñùµ±3£¼t£¼6ʱ£¬°Ñ¡÷EFGÈý±ßµÄƽ·½±íʾ³öÀ´£¬¡÷EFGÊÇÖ±½ÇÈý½ÇÐÎÒ²ÓÐÈýÖÖ¿ÉÄÜ£¬Í¬Àí½â³ötµÄÖµ£»
£¨3£©GG¡äËùÔÚµÄÖ±ÏßÓëÖ±ÏßCA´¹Ö±£¬ÇÒ¹ýGµã£¬¹Ê±í´ïʽΪy=$\frac{4}{3}$x-$\frac{7}{6}$£¬·Ö±ðÇó³öÖ±ÏßGG¡äÓëÖ±ÏßCB¡¢BA¡¢OA¡¢OCµÄ½»µãG¡äµÄÖеãÔÚÖ±ÏßMNÉϼ´¿ÉµÃµ½ËÄÖÖÇé¿öµÄ´ð°¸£®

½â´ð ½â£º£¨1£©¡ßA£¨4£¬0£©£¬C£¨0£¬3£©
¡àOA=4£¬OC=3£¬
¡àAC=$\sqrt{42+32}$=5£¬CE=1
Èçͼ1£¬Á¬½ÓCF£¬
¡ßEF¡ÎAC£¬
¡à¡÷OEF¡×¡÷OCA£¬
¡à$\frac{OE}{OC}$=$\frac{OF}{OA}$£¬
¡à$\frac{2}{3}$=$\frac{OF}{4}$£¬
¡àOF=$\frac{8}{3}$£¬
¡àS=S¡÷CEF=$\frac{1}{2}$¡Á1¡Á$\frac{8}{3}$=$\frac{4}{3}$£»

£¨2£©¢Ùµ±0£¼t£¼3ʱ£¬E£¨0£¬t£©£¬F£¨$\frac{4}{3}$t£¬0£©£¬G£¨2£¬$\frac{3}{2}$£©£¬
¡àEF2=$\frac{25}{9}$t2£¬EG2=22+£¨t-$\frac{3}{2}$£©2£¬GF2=£¨$\frac{4}{3}$t-2£©2+£¨$\frac{3}{2}$£©2£¬
ÈôEF2+EG2=GF2£¬ÔòÓÐ$\frac{25}{9}$t2+22+£¨t-$\frac{3}{2}$£©2=£¨$\frac{4}{3}$t-2£©2+£¨$\frac{3}{2}$£©2£¬½âµÃt=0£¨ÉáÈ¥£©£¬t=-$\frac{7}{3}$£¨ÉáÈ¥£©£¬
ÈôEF2+FG2=EG2£¬ÔòÓÐ$\frac{25}{9}$t2+£¨$\frac{4}{3}$t-2£©2+£¨$\frac{3}{2}$£©2=22+£¨t-$\frac{3}{2}$£©2£¬½âµÃt=0£¨ÉáÈ¥£©£¬t=$\frac{21}{32}$£¬
ÈôEG2+GF2=EF2£¬ÔòÓÐ22+£¨t-$\frac{3}{2}$£©2+£¨$\frac{4}{3}$t-2£©2+£¨$\frac{3}{2}$£©2=$\frac{25}{9}$t2£¬½âµÃt=$\frac{3}{2}$£¬
¢Úµ±3£¼t£¼6ʱ£¬E£¨$\frac{4}{3}$t-4£¬3£©£¬F£¨4£¬t-3£©£¬G£¨2£¬$\frac{3}{2}$£©£¬
¡àEF2=£¨$\frac{4}{3}$t-8£©2+£¨t-6£©2£¬EG2=£¨$\frac{4}{3}$t-6£©2+£¨$\frac{3}{2}$£©2£¬GF2=22+£¨t-$\frac{9}{2}$£©2£¬
ÈôEF2+EG2=GF2£¬ÔòÓУ¨$\frac{4}{3}$t-8£©2+£¨t-6£©2+£¨$\frac{4}{3}$t-6£©2+£¨$\frac{3}{2}$£©2=22+£¨t-$\frac{9}{2}$£©2£¬ÕûÀíµÃ32t2-363t+1026=0£¬¡÷=441£¬½âµÃt=$\frac{171}{32}$£¬t=6£¨ÉáÈ¥£©£¬
ÈôEF2+FG2=EG2£¬ÔòÓУ¨$\frac{4}{3}$t-8£©2+£¨t-6£©2+22+£¨t-$\frac{9}{2}$£©2=£¨$\frac{4}{3}$t-6£©2+£¨$\frac{3}{2}$£©2£¬ÕûÀíµÃ6t2-79t+258=0£¬¡÷=49£¬½âµÃt=6£¨ÉáÈ¥£©£¬t=$\frac{43}{6}$£¾6£¨ÉáÈ¥£©£¬
ÈôEG2+GF2=EF2£¬ÔòÓУ¨$\frac{4}{3}$t-6£©2+£¨$\frac{3}{2}$£©2+22+£¨t-$\frac{9}{2}$£©2=£¨$\frac{4}{3}$t-8£©2+£¨t-6£©2£¬½âµÃt=$\frac{9}{2}$£¬
×ÛÉÏ¿ÉÖªµ±¡÷EFGΪֱ½ÇÈý½ÇÐÎʱ£¬t=$\frac{21}{32}$»òt=$\frac{3}{2}$»òt=$\frac{9}{2}$»òt=$\frac{171}{32}$£»
£¨3£©Ö±ÏßMNΪy=-$\frac{3}{4}$x+t£¬G£¨2£¬$\frac{3}{2}$£©£¬
GG¡äËùÔÚµÄÖ±ÏßÓëÖ±ÏßCA´¹Ö±£¬ÇÒ¹ýGµã£¬¹Ê±í´ïʽΪy=$\frac{4}{3}$x-$\frac{7}{6}$£¬ÔÚy=$\frac{4}{3}$x-$\frac{7}{6}$ÖУ¬
Áîx=0£¬¿ÉµÃ£ºy=-$\frac{7}{6}$£¬¡àG¡ä£¨0£¬-$\frac{7}{6}$£©£¬GG¡äÖе㣨1£¬$\frac{1}{6}$£©£¬´úÈëÖ±ÏßMNΪy=-$\frac{3}{4}$x+t£¬½âµÃt=$\frac{11}{12}$£¬
Áîy=0£¬¿ÉµÃ£ºx=$\frac{7}{8}$£¬¡àG¡ä£¨$\frac{7}{8}$£¬0£©£¬GG¡äÖе㣨$\frac{23}{16}$£¬$\frac{3}{4}$£©£¬´úÈëÖ±ÏßMNΪy=-$\frac{3}{4}$x+t£¬½âµÃt=$\frac{117}{64}$£¬
Áîx=4£¬¿ÉµÃ£ºy=$\frac{25}{6}$£¬¡àG¡ä£¨4£¬$\frac{25}{6}$£©£¬GG¡äÖе㣨3£¬$\frac{17}{6}$£©£¬´úÈëÖ±ÏßMNΪy=-$\frac{3}{4}$x+t£¬½âµÃt=$\frac{61}{12}$£¬
Áîy=3£¬¿ÉµÃ£ºx=$\frac{25}{8}$£¬¡àG¡ä£¨$\frac{25}{8}$£¬3£©£¬GG¡äÖе㣨$\frac{41}{16}$£¬$\frac{9}{4}$£©£¬´úÈëÖ±ÏßMNΪy=-$\frac{3}{4}$x+t£¬½âµÃt=$\frac{267}{64}$£¬
×ÛÉÏ¿ÉÖªÂú×ãÌõ¼þµÄtµÄֵΪ$\frac{11}{12}$»ò$\frac{117}{64}$»ò$\frac{61}{12}$»ò$\frac{267}{64}$£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÒ»´Îº¯Êý½âÎöʽºÍÏàËÆÈý½ÇÐεÄÅж¨ºÍÐÔÖÊ¡¢¹´¹É¶¨ÀíºÍÒ»Ôª¶þ´Î·½³ÌµÄ×ÛºÏÓ¦Óã¬ÔÚ£¨1£©ÖÐÄÜ·Ö±ðÓÃt±íʾ³ö¡÷EFGÖеĵ׺͸ßÊǽâÌâµÄ¹Ø¼ü£¬ÔÚ£¨2£©ÖÐ×¢Òâ·ÖÇé¿öÌÖÂÛ£¬ÔÚ£¨3£©ÖÐÓÉÌõ¼þµÃ³öGG¡äËùÔÚµÄÖ±ÏßÓëÖ±ÏßCA´¹Ö±£¬ÇÒ¹ýGµã£¬ÊǽâÌâµÄ¹Ø¼ü£®±¾Ìâ¼ÆËãÁ¿±È½Ï´ó£¬ÇÒÇé¿ö½Ï¶à£¬½ÏÒשµôÆäÖÐÒ»ÖÖÇé¿ö£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®²¼´üÀïÓÐÈý¸öºìÇòºÍÁ½¸ö°×Çò£¬ËüÃdzýÁËÑÕÉ«ÍâÆäËû¶¼Ïàͬ£¬´Ó²¼´üÀïÃþ³öÁ½¸öÇò£¬Ãþµ½Á½¸öºìÇòµÄ¸ÅÂÊÊÇ$\frac{3}{10}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®¼ÆË㣺
£¨1£©£¨-2£©2-$\sqrt{12}$+£¨-3£©0-£¨$\frac{1}{3}$£©-2
£¨2£©$\frac{2x}{x+1}$-$\frac{2x+4}{{x}^{2}-1}$¡Â$\frac{x+2}{{x}^{2}-2x+1}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®Ä³ÊÐΪÁ˽â¸ß·åʱ¶Î´Ó×ÜÕ¾³Ë16·³µ³öÐеÄÈËÊý£¬Ëæ»ú³é²éÁË10¸ö°à´Î³Ë¸Ã·³µÈËÊý£¬½á¹ûÈçÏ£º
14£¬23£¬16£¬25£¬23£¬28£¬26£¬27£¬23£¬25£®
£¨1£©¼ÆËãÕâ10¸ö°à´Î³Ë³µÈËÊýµÄƽ¾ùÊý£»
£¨2£©Èç¹û16·³µÔڸ߷åʱ¶Î´Ó×ÜÕ¾¹²³ö³µ60¸ö°à´Î£¬¸ù¾ÝÉÏÃæµÄ¼ÆËã½á¹û£¬¹À¼ÆÔڸ߷åʱ¶Î´Ó×ÜÕ¾³Ë¸Ã·³µ³öÐеij˿͹²ÓжàÉÙ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®Ò»Ì¨Ï´Ò»úµÄ½ø¼ÛÊÇ2000Ôª£¬Èç¹ûÉ̵êÒªÓ¯Àû10%£¬Ôò¹ºÂòm̨ÕâÑùµÄÏ´Ò»úÐèÒª2200m Ôª£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®Çó·Öʽ£¨x-2-$\frac{{x}^{2}-x}{x+2}$£©+$\frac{x-4}{2}$µÄÖµ£¬ÆäÖÐxÈ¡²»µÈʽ×é$\left\{\begin{array}{l}{2x£¼-1}\\{x+2£¾0}\end{array}\right.$µÄÕûÊý½â£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÈçͼËùʾ£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬¹ýµãA£¨-$\sqrt{3}$£¬0£©µÄÁ½ÌõÖ±Ïß·Ö±ð½»yÖáÓÚB¡¢CÁ½µã£¬¡ÏABO=30¡ã£¬OB=3OC£®
£¨1£©ÊÔ˵Ã÷Ö±ÏßACÓëÖ±ÏßAB´¹Ö±£»
£¨2£©ÈôµãDÔÚÖ±ÏßACÉÏ£¬ÇÒDB=DC£¬ÇóµãDµÄ×ø±ê£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬Ö±ÏßBDÉÏÊÇ·ñ´æÔÚµãP£¬Ê¹ÒÔA¡¢B¡¢PÈýµãΪ¶¥µãµÄÈý½ÇÐÎÊǵÈÑüÈý½ÇÐΣ¿Èô´æÔÚ£¬ÇëÖ±½Óд³öPµãµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®2016Äê9ÔÂ15ÈÕ£¬ÎÒ¹úÔÚ¾ÆȪÎÀÐÇ·¢ÉäÖÐÐÄÓó¤Õ÷¶þºÅFT2»ð¼ý½«Ì칬¶þºÅ¿Õ¼äʵÑéÊÒ·¢ÉäÉý¿Õ£®´óÔ¼¾­¹ý10·ÖÖӺ󣬳ɹ¦½øÈëÔ¶µØµã350000Ã׵ijõʼ¹ìµÀ£®½«Êý¾Ý350000ÓÿÆѧ¼ÇÊý·¨¿É±íʾΪ£¨¡¡¡¡£©
A£®35¡Á104B£®350¡Á103C£®3.5¡Á105D£®0.35¡Á106

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÇóÖ¤£ºÎÞÂÛkÈ¡ºÎÖµ£¬¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ìx2-kx+£¨k-2£©=0Ò»¶¨ÓÐÁ½¸ö²»ÏàµÈµÄʵÊý¸ù£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸