精英家教网 > 初中数学 > 题目详情
7.用指定的方法解方程:
(1)4x2+x-3=0(公式法);
(2)x2-10x-11=0(配方法).

分析 (1)找出a=2,b=-4,c=-1,然后代入公式求出方程的解;
(2)先配方得到(x-5)2=36,然后开平方解方程即可.

解答 解:(1)a=4,b=1,c=-3,
b2-4ac=49,
x=$\frac{-1±7}{2}$,
x1=3,x2=-4;
(2)x2-10x-11=0
x2-10x+25=36
(x-5)2=36
x-5=6,x-5=-6
x1=11,x2=-1.

点评 本题主要考查了配方法和公式法解一元二次方程的知识,解答本题的关键是熟练掌握配方法、公式法解一元二次方程过程和步骤.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

17.计算($\frac{5}{13}$)2013×($\frac{13}{5}$)2014

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,在△ABC,∠CAB=∠CBA=45°,CA=CB,点E为BC的中点,CN⊥AE交AB于N.
(1)求证:∠BCN=∠CAE;
(2)求证:AE=CN+EN(请用多种方法证明)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.如图,花园中间有两条小路,小路的两个边界完全相同,且任何地方的水平宽度都相同,已知除去小路后的花园面积为600平方米.如果设计小路的宽度为x米,为求小路的宽度可列方程为x2-52x+40=0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.先观察下列等式,然后用你发现的规律解答下列问题.
$\frac{1}{1×2}$=1-$\frac{1}{2}$;
$\frac{1}{2×3}$=$\frac{1}{2}$-$\frac{1}{3}$;
$\frac{1}{3×4}$=$\frac{1}{3}$-$\frac{1}{4}$;

(1)求和:$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+…+$\frac{1}{2014×2015}$;
(2)探究:$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+…+$\frac{1}{n(n+1)}$的值;
(3)若$\frac{1}{1×3}$+$\frac{1}{3×5}$+$\frac{1}{5×7}$+…+$\frac{1}{(2n-1)(2n+1)}$的值为$\frac{17}{35}$,求n的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.已知二次函数的图象与y轴交点的纵坐标为1,且经过点(2,5)和(-2,13),求这个二次函数的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.计算:(1-2)×(2-3)×(3-4)×…×(2012-2013)=1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.$\frac{1}{\sqrt{5}+\sqrt{4}}$=$\frac{1×(\sqrt{5}-\sqrt{4)}}{(\sqrt{5}+\sqrt{4})(\sqrt{5-\sqrt{4})}}$=$\frac{\sqrt{5}-\sqrt{4}}{{(\sqrt{5})}^{2}{-(\sqrt{4})}^{2}}$=$\sqrt{5}$$-\sqrt{4}$=$\sqrt{5}$-2
$\frac{1}{\sqrt{6}+\sqrt{5}}$=$\frac{1×(\sqrt{6}-\sqrt{5)}}{(\sqrt{6}+\sqrt{5})(\sqrt{6}-\sqrt{5})}$=$\frac{\sqrt{6}-\sqrt{5}}{{(\sqrt{6})}^{2}{-(\sqrt{5})}^{2}}$=$\sqrt{6}$-$\sqrt{5}$
请回答下列问题:
(1)观察上面的解题过程.请直接写出结果.$\frac{1}{\sqrt{n}+\sqrt{n-1}}$=$\sqrt{n}$-$\sqrt{n-1}$
(2)利用上面提供的信息请化简:
$\frac{1}{\sqrt{2}+1}$+$\frac{1}{\sqrt{3}+\sqrt{2}}$+$\frac{1}{\sqrt{4}+\sqrt{3}}$+…+$\frac{1}{\sqrt{2007}+\sqrt{2008}}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图是数值转换机的示意图,小明按照其对应系画出了y与x的函数图象.
(1)分别写出当0≤x≤4与x>4时,y与x的函数关系式;
(2)求出所有输出y的值的最小数值;
(3)当输出y的值为3时,求x的值.

查看答案和解析>>

同步练习册答案