精英家教网 > 初中数学 > 题目详情
18.顾客满意已经成为企业获得竞争优势的重要策略,某大型超市对顾客服务质量的满意度进行了调查,对其有“好评”“中评”“差评”三种评价,假设这三种评价是等可能的.

(1)小丽对该大型超市对顾客服务质量的满意度显示的评价信息进行了统计,并列出了两幅不完整的统计图.
利用图中所提供的信息解决以下问题:
①小丽一共统计了150个评价;
②请将图1补充完整;
③图2中“差评”所占的百分比是13.3%;
(2)若甲、乙两名消费者对该大型超市对顾客服务质量的满意度进行了评价,请你用列表格或画树状图的方法求两人中至少有一个给“好评”的概率.

分析 (1)①用“中评”、“差评”的人数除以二者的百分比之和可得总人数;
②用总人数减去“中评”、“差评”的人数可得“好评”的人数,补全条形图即可;
③由差评的人数比总人数的百分比×100%可得; 
(2)可通过列表表示出甲、乙对商品评价的所有可能结果数,通过概率公式计算可得.

解答 解:(1)①小丽统计的评价一共有:$\frac{40+20}{1-60%}$=150(个); 
②“好评”一共有150×60%=90(个),补全条形图如图1:

③图2中“差评”所占的百分比是:$\frac{20}{150}$×100%=13.3%; 
(2)列表如下:

 
好,好好,中好,差
好,中中,中中,差
好,差中,差差,差
由表可知,一共有9种等可能结果,其中至少有一个给“好评”的有5种,
∴两人中至少有一个给“好评”的概率=$\frac{5}{9}$. 
故答案为:(1)①150;③13.3%.

点评 此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

8.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,动点D从点A出发,沿线段AC以每秒1个单位的速度向终点C运动,动点E同时从点B出发,以每秒2个单位的速度沿射线BC方向运动,当点D停止时,点E也随之停止,连结DE,当C、D、E三点不在同一直线上时,以ED、EC我邻边作?ECFD,设点D运动的时间为t(秒).
(1)用含t的代数式表示CE的长度.
(2)当F点落在△ABC的内部时,求t的取值范围.
(3)设?ECFD的面积为S(平方单位),求S与t之间的函数关系式.
(4)当点F到Rt△ABC的一条直角边的距离是到另一条直角边距离的2倍时,直接写出?ECFD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.下列计算正确的是(  )
A.a2+a2=a4B.(a23=a5C.2a2-a2=2D.a5•a2=a7

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.若a,b是一元二次方程x(x-2)=x-2的两根,且点A(-a,-b)是反比例函数图象上的一个点,若自点A向两坐标轴作垂线,两垂线与坐标轴构成的矩形的面积是(  )
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.如图,AB是⊙O的切线,B为切点,若∠ABC=120°,AB=2$\sqrt{3}$,AC经过点O,与⊙O分别相交于点D,C,则阴影部分的面积是(  )
A.2$\sqrt{3}$B.$\frac{π}{6}$C.4$\sqrt{3}$-$\frac{2π}{3}$D.2$\sqrt{3}$-$\frac{2π}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.在数学实践课上,老师在黑板上画出如图的图形,(其中点B,F,C,E在同一条直线上).并写出四个条件:①AB=DE,②∠1=∠2.③BF=EC,④∠B=∠E,交流中老师让同学们从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题.
你选择的题设:①③④;结论:②.(均填写序号)
请给予证明.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.列代数式或方程:
(1)a与b的平方和;
(2)m的2倍与n的差的相反数;
(3)某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?(设男生人数为x人)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④其顶点坐标为($\frac{1}{2}$,-2);⑤当x<$\frac{1}{2}$时,y随x的增大而减小;⑥a+b+c>0正确的有(  )
A.3个B.4个C.5个D.6个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,四边形ABCD是平行四边形,E、F分别是BC、AD上的点,∠1=∠2.
求证:AF=CE.

查看答案和解析>>

同步练习册答案