试题分析:(1)连结AD,根据圆的基本性质可得AD=AB,再根据圆周角定理可得∠ACB=90°,即AC⊥BD,即可证得结论;
(2)在Rt△ADG中,根据勾股定理可表示出DG的长,再证得Rt△AFG∽Rt△DBG,根据相似三角形的性质即可证得结论;
(3)在点D运动过程中,若点G落在线段OB上,且△FOG∽△ABC时,由Rt△AFG∽Rt△ABC,可证得Rt△FOG∽Rt△AFG,再根据相似三角形的性质求解即可.
(1)连结AD
∵点D、B在弧BE上
∴AD=AB
∵点C在半圆O上,AB为半圆O的直径,
∴∠ACB=90°,即AC⊥BD,
∴DC=BC;
(2)∵AD=AB=10,AG=x,
∴BG=10-x,
∵DG⊥AB于点G,
∴在Rt△ADG中,DG
2=AD
2-AG
2=100-x
2,
∴DG=
∵∠CAB+∠B=∠D+∠B=90°,
∴∠FAG=∠D,
∴Rt△AFG∽Rt△DBG,
∴FG/AG=BG/DG,
∴FG/x="(10-x)/"
,
∴FG="x(10-x)/"
则y=FG
2=
.
其中x的取值范围为0≤x≤10;
(3)在点D运动过程中,若点G落在线段OB上,且△FOG∽△ABC时,
∵Rt△AFG∽Rt△ABC,
∴Rt△FOG∽Rt△AFG,
∴FG
2=AG·OG=x(x-5),
∴
=x(x-5),解得:x=
经检验可知:AG=
.
综上所述,当△FOG∽△ABC时,AG=
.
点评:此类问题是初中数学的重点和难点,在中考中极为常见,一般以压轴题形式出现,难度较大.