精英家教网 > 初中数学 > 题目详情
(2009•宜宾)如图,在平面直角坐标系xoy中,等腰梯形OABC的下底边OA在x轴的正半轴上,BC∥OA,OC=AB.tan∠BA0=,点B的坐标为(7,4).
(1)求点A、C的坐标;
(2)求经过点0、B、C的抛物线的解析式;
(3)在第一象限内(2)中的抛物线上是否存在一点P,使得经过点P且与等腰梯形一腰平行的直线将该梯形分成面积相等的两部分?若存在,请求出点P的横坐标;若不存在,请说明理由.

【答案】分析:(1)本题可通过构建直角三角形来求解,过C作CD⊥OA于D,过B作BE⊥OA于E,在直角三角形OCD和ABE中,可根据B点的纵坐标即CD,BE的长和两底角的正切值求出AE,OD的长,即可求出C、A的坐标.
(2)根据已知的三点坐标即可用待定系数法求出抛物线的解析式.
(3)应该有两个符合条件的P点,以过P且平行于AB的直线为例说明:可设过P且平行于等腰梯形一腰AB的直线与BC、OA的交点为M、N,那么平行四边形MBAN的面积就是梯形面积的一半,据此可求出BM,AN的长,即可求出BM、AN的长,即可求出M、N的坐标也就求出了直线MN的解析式和抛物线的解析式即可求出P点的坐标,根据抛物线和等腰梯形的对称性,求出的P点关于抛物线对称轴的对称点也应该符合题意.
解答:解:(1)过C作CD⊥OA于D,过B作BE⊥OA于E,
在直角三角形ABE中,BE=4,tan∠BAE=
∴AE=3,同理可求得OD=3.
因此C(3,4),A(10,0).

(2)设抛物线的解析式为y=ax2+bx,
则有:
解得
∴y=-x2+x.

(3)假设存在这样的P点,设过P点且与BA平行的直线交BC于M,交AO于N.
易知:BC=DE=4,OA=10,CD=4,
∴S梯形ABCO=(BC+OA)•CD=28.
∴S?ANMB=S梯形ABCO=14
∴BM=AN=
∴M(,4),N(,0)
∴直线MN的解析式为:y=-x+,联立抛物线的解析式有:

解得(不合题意舍去),
∴P().
根据抛物线和等腰梯形的对称性可知P点关于抛物线对称轴的对称点也应该符合题意,
因此符合条件的P点有两个:P(),().
点评:本题考查了等腰梯形的性质、二次函数解析式的确定、以及图形面积的求法等知识点.
练习册系列答案
相关习题

科目:初中数学 来源:2009年全国中考数学试题汇编《二次函数》(05)(解析版) 题型:解答题

(2009•宜宾)如图,在平面直角坐标系xoy中,等腰梯形OABC的下底边OA在x轴的正半轴上,BC∥OA,OC=AB.tan∠BA0=,点B的坐标为(7,4).
(1)求点A、C的坐标;
(2)求经过点0、B、C的抛物线的解析式;
(3)在第一象限内(2)中的抛物线上是否存在一点P,使得经过点P且与等腰梯形一腰平行的直线将该梯形分成面积相等的两部分?若存在,请求出点P的横坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年全国中考数学试题汇编《概率》(06)(解析版) 题型:解答题

(2009•宜宾)如图所示,有一张“太阳”和两张“小花”样式的精美卡片(共三张),它们除花形外,其余都一样.

(1)小明认为:闭上眼从中任意抽取一张,抽出“太阳”卡片与“小花”卡片是等可能的,因为只有这两种卡片.小明的说法正确吗?为什么;
(2)混合后,从中一次抽出两张卡片,请通过列表或画树状图的方法求出两张卡片都是“小花”的概率;
(3)混合后,如果从中任意抽出一张卡片,使得抽出“太阳”卡片的概率为,那么应添加多少张“太阳”卡片?请说明理由.

查看答案和解析>>

科目:初中数学 来源:2010年四川省自贡市仙市中学中考数学一模试卷(解析版) 题型:填空题

(2009•宜宾)如图,公园内有一个长为5米的跷跷板AB,当支点0在距离A端2米时,A端的人可以将B端的人跷高1.5米.那么当支点0在AB的中点时,A端的人下降同样的高度可以将B端的人跷高    米.

查看答案和解析>>

科目:初中数学 来源:2009年四川省宜宾市中考数学试卷(解析版) 题型:解答题

(2009•宜宾)如图所示,有一张“太阳”和两张“小花”样式的精美卡片(共三张),它们除花形外,其余都一样.

(1)小明认为:闭上眼从中任意抽取一张,抽出“太阳”卡片与“小花”卡片是等可能的,因为只有这两种卡片.小明的说法正确吗?为什么;
(2)混合后,从中一次抽出两张卡片,请通过列表或画树状图的方法求出两张卡片都是“小花”的概率;
(3)混合后,如果从中任意抽出一张卡片,使得抽出“太阳”卡片的概率为,那么应添加多少张“太阳”卡片?请说明理由.

查看答案和解析>>

同步练习册答案