精英家教网 > 初中数学 > 题目详情
23、如图,已知:AD=BC,AC=BD.求证:OD=OC.
分析:已知条件AD与AC在一个三角形中的话,需连接CD.然后证△ACD≌△BDC,得到角相等,再利用等角对等边进行证明.
解答:证明:连接CD,
∵AD=BC,AC=BD,CD=CD,
∴△ACD≌△BDC(SSS)
∴∠ACD=∠BDC,
∴OD=OC.(等角对等边)
点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

12、如图,已知AC=AD,请增加一个条件,使△AEC≌△AED,这个条件是
EC=ED(答案不唯一)

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,已知BE⊥AD,CF⊥AD,且BE=CF.
(1)请你判断AD是△ABC的中线还是角平分线?请证明你的结论;
(2)连接BF、CE,若四边形BFCE是菱形,则△ABC中应添加一个条件
AB=AC或∠ABC=∠ACB或AD⊥BC或AD平分∠BAC

查看答案和解析>>

科目:初中数学 来源: 题型:

15、如图,已知AB=AD,在不添加任何辅助线的前提下,要使△ABC≌△ADC还需添加一个条件,这个条件可以是DC=BC.(只需写出一个)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知:AD∥BC,且DC⊥AD于D,求证:
①DC⊥BC
②∠1+∠2=180°.

查看答案和解析>>

同步练习册答案