精英家教网 > 初中数学 > 题目详情

【题目】如图,在中,的平分线分别交于点相交于点,连接.下列结论:①④点三个顶点的距离相等;⑤.其中正确的结论有( )个.

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】

利用三角形的内角和,角平分线的性质可得∠CFD=120°,所以∠BFE=60°,并且有条件易知F为三角形的内心,若想证明BE+CD=BC,只能给BE,CD找相等的线段代替,自然想到构造全等三角形.

(1)∵∠A=60°,
∴∠ABC+ACB=120°,
BD平分∠ABC,CE平分∠ACB,
∴∠ABD=CBD,ACE=BCE,
∴∠CBD+BCE=60°,
∴∠BFE=60°,


∴②cosBFE=,正确.
(2)∵∠ABC,ACB的平分线分别交AC、AB于点D,E,CE、BD相交于点F,
F为三角形的内心,
∴④点FABC三边的距离相等错误.
(3)在BC上截取BH=BE,
BD平分∠ABC,
∴∠ABD=CBD,
∴△EBF≌△HBF,
∴∠EFB=HFB=60°.
由(1)知∠CFB=120°,
∴∠CFH=60°,
∴∠CFH=CFD=60°,
又∵CE平分∠ACB,
∴∠ACE=BCE,
∴△CDF≌△CHF.
CD=CH,
CH+BH=BC,
∴⑤BE+CD=BC正确.
∵△CDF≌△CFH,
DF=FH,
∵△FEB≌△HFB,
FE=FH
DF=FH,FE=FH,
DF=FE,DEF为等腰三角形,
∴∠EDF=FED
故③正确.
题目现有的条件不能够证明①,所以①④错误.
故选:C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,河流两岸平行,是河岸上间隔米的两根电线杆,某人在河岸上的处测得,然后沿河岸走了米到达处,测得,则河流的宽度的值为________(结果精确到个位,

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点A(2,3)和点B(0,2),点A在反比例函数y= 的图象上.作射线AB,再将射线AB绕点A按逆时针方向旋转45°,交反比例函数图象于点C,则点C的坐标为________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AB=AD=6AB⊥BCAD⊥CD∠BAD=60°,点MN分别在ABAD边上,若AMMB=ANND=12,则tan∠MCN=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是某一过街天桥的示意图,天桥高米,坡道倾斜角,在距米处有一建筑物.为方便行人上下天桥,市政部门决定减少坡道的倾斜角,但要求建筑物与新坡角处之间地面要留出不少于米宽的人行道.

若将倾斜角改建为(即),则建筑物是否要拆除?(

若不拆除建筑物,则倾斜角最小能改到多少度(精确到)?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,以为直径的分别交于点,延长到点,连接,使

求证:的切线;

,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一艘海轮位于灯塔P的北偏东方向55°,距离灯塔为2海里的点A.如果海轮沿正南方向航行到灯塔的正东位置,海轮航行的距离AB长是(  )

A. 2海里 B. 2sin 55°海里

C. 2cos 55°海里 D. 2tan 55°海里

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC,∠ACB=90°,BC=3,AC=4,小红按如下步骤作图:

分别以A、C为圆心,以大于AC的长为半径在AC两边作弧,交于两点M、N;

连接MN,分别交AB、AC于点D、O;

CCE∥ABMN于点E,连接AE、CD.

则四边形ADCE的周长为(  )

A. 10 B. 20 C. 12 D. 24

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等边中,,射线,点从点出发沿射线的速度运动,同时点从点出发沿射线的速度运动,设点运动的时间为.

1)当点在线段上运动时,_________,当点在线段的延长线上运动时,_________(请用含的式子表示);

2)在整个运动过程中,当以点为顶点的四边形是平行四边形时,求的值;

3)求当_________时,两点间的距离最小.

查看答案和解析>>

同步练习册答案