精英家教网 > 初中数学 > 题目详情

作业宝如图,已知在Rt△ABC中,∠ACB=90°,AC=6,BC=8,BE平分∠ABC交AC于点E,EF⊥AB,垂足为F.
(1)求EF的长度;
(2)作CD⊥AB,垂足为D,CD与BE相交于G,试说明:CE=CG;
(3)连接FG,试说明:四边形CEFG是菱形.

解:(1)∵BE平分∠ABC,∠ACB=90°,EF⊥AB,垂足为F,
∴EF=CE.
在△BFE与△BCE中,∠C=∠BFE=90°,

∴△BFE≌△BCE,
∴BF=BC=8.
∵在Rt△ABC中,∠ACB=90°,AC=6,BC=8,
∴AB=10,
∴AF=AB-BF=2.
设EF=x,则CE=x,AE=6-x,
在直角△AEF中,由勾股定理,得AE2=EF2+AF2
∴(6-x)2=x2+22
解得x=

(2)∵在△BCE中,∠CEB=90°-∠CBE,
∠CGE=∠DGB=90°-∠DBG,
∠CBE=∠DBG,
∴∠CEB=∠CGE,
∴CE=CG;

(3)∵CD⊥AB,EF⊥AB,∴CD∥EF,
∵EF=CE,CE=CG,∴EF=CG,
∴四边形CEFG是平行四边形,
又∵CE=CG,
∴?CEFG是菱形.
分析:(1)先根据角平分线的性质,得出EF=CE,然后在直角△AEF中,运用勾股定理即可求出EF的长度;
(2)在△CEG中证明∠CEG=∠CGE即可得出结论;
(3)先根据有一组对边平行且相等的四边形是平行四边形得出四边形CEFG是平行四边形,再根据菱形的定义证明出四边形CEFG是菱形.
点评:本题考查了角平分线的性质定理,勾股定理,等腰三角形的判定及菱形的判定,综合性较强,难度中等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知在Rt△ABC中,∠C=90°,BC=1,AC=2,则tanA的值为(  )
A、2
B、
1
2
C、
5
5
D、
2
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•驿城区模拟)如图,已知在Rt△ABC中,∠B=90°,D、E分别是边AB、AC的中点,若DE=4,AC=10,则AB的值为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在Rt△ABC中,∠C=90°,内切圆的半径为3cm,外接圆的半径为12.5cm,求△ABC的三边长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在Rt△ABC中,∠C=90°,点D在BC上,AD=BD,sin∠ADC=
45
,AC=4,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在Rt△ABC中,∠C=90°.根据要求用尺规作图:
(1)作斜边AB的垂直平分线PQ,垂足为Q;
(2)作∠B的角平分线BM.

查看答案和解析>>

同步练习册答案