试题分析:1)证明:∵四边形ABCD是正方形,对角线的交点为O,
∴AC=BD,OA=OC,OB=OD,∴OA=OB.
∵AC⊥BD,AG⊥BE,∴∠FAO+∠AFO=90°,∠EAG+∠AEG=90°,
∴∠AFO=∠BEO.
又∵∠AOF=∠BOE=90°∴△AOF≌△BOE.∴OE=OF.
(2)OF=OE
∵四边形ABCD是菱形,对角线的交点为O,∠ABC=120°
∴AC⊥BD,∠ABO=60° ∴∠FAO+∠AFO=90°.
∵AG⊥BE,∴∠EAG+∠BEA=90°.∴∠AFO=∠BEO 又∵∠AOF=∠BOE=90°
∴△AOF∽△BOE.
∴OF:OE=AO:OB.∵∠ABO=60°,AC⊥BD,∴AO:OB=tan60°=.
∴OF=OE
(3)OF=tan(α-45°)OE或OF=tan(135°-α)OE
点评:本题考查全等三角形和正方形、菱形、等腰梯形,解决本题的方法是熟悉全等三角形的判定方法和正方形、菱形、等腰梯形的性质