精英家教网 > 初中数学 > 题目详情
12.如图,已知在平面直角坐标系中,点A(0,3),点B为x轴上一动点,连接AB,线段AB绕着点B按顺时针方向旋转90°至线段CB,过点C作直线l∥y轴,在直线l上有一点D位于点C下方,满足CD=BO,则当点B从(-3,0)平移到(3,0)的过程中,点D的运动路径长为3+3$\sqrt{5}$.

分析 如图,当点B从(-3,0)平移到(3,0)的过程中,C从C1(0,-3)运动到C2(6,3),D从D1(0,-6)→D2(3,0)→D3(6,0).求出D1D2=$\sqrt{{3}^{2}+{6}^{2}}$=3$\sqrt{5}$,D2D3=3,即可解决问题.

解答 解:如图,当点B从(-3,0)平移到(3,0)的过程中,C从C1(0,-3)运动到C2(6,3),D从D1(0,-6)→D2(3,0)→D3(6,0).

D1D2=$\sqrt{{3}^{2}+{6}^{2}}$=3$\sqrt{5}$,D2D3=3,
∴点D的运动路径长为3+3$\sqrt{5}$,
故答案为3+3$\sqrt{5}$.

点评 本题考查坐标与图形的变化,旋转变换.平移变换等知识,解题的关键是正确寻找点D的运动轨迹,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源:2017届辽宁省九年级3月月考数学试卷(解析版) 题型:填空题

在函数y=中,自变量x的取值范围是________.

查看答案和解析>>

科目:初中数学 来源:2016-2017学年贵州省七年级下学期第一次月考数学试卷(解析版) 题型:填空题

比较大小: _____(填“<”或“>”或“=”).

查看答案和解析>>

科目:初中数学 来源:2016-2017学年贵州省七年级下学期第一次月考数学试卷(解析版) 题型:单选题

一个数的平方根与立方根都是它本身,这个数是( )

A. 1 B. ﹣1 C. 0 D. ±1,0

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,计划围一个面积为50m2的长方形场地,一边靠旧墙(墙长为10m),另外三边用篱笆围成,并且它的长与宽之比为5:2.讨论方案时,小英说:“我们不可能围成满足要求的长方形场地.”小军说:“面积和长宽比例是确定的,肯定可以围得出来.”请你判断谁的说法正确,为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.在平面直角坐标系xOy中,对于半径为r(r>0)的⊙O和点P,给出如下定义:
若r≤PO≤$\frac{3}{2}$r,则称P为⊙O的“近外点”.?

(1)当⊙O的半径为2时,点A(4,0),B (-$\frac{5}{2}$,0),C(0,3),D (1,-1)中,⊙O的“近外点”是B,C;
(2)若点E(3,4)是⊙O的“近外点”,求⊙O的半径r的取值范围;
(3)当⊙O 的半径为2时,直线y=$\frac{{\sqrt{3}}}{3}$x+b(b≠0)与x轴交于点M,与y轴交于点N,若线段MN上存在⊙O的“近外点”,直接写出b的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC,动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C出发,沿射线AC方向以每秒3个单位的速度运动,过点D作DH⊥AB于H,过点E作EF上AC交射线BB1于F,G是EF中点,连接DG,设点D运动的时间为t秒.
(1)当t为何值时,AD=AB,并求出此时DE的长度;
(2)当AD<AE时,若△DEG与△ACB相似,求t的值;
(3)以DH所在直线为对称轴,线段AC经轴对称变换后的图形为A′C′.
①当t>$\frac{3}{5}$时,连接C′C,得到梯形ACC′A′,设梯形ACC′A′的面积为S,求S关于t的函数关系式;
②当线段A′C′与射线BB′,有公共点时,求t的取值范围(写出答案即可).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,将△OAB放在平面直角坐标系中,O为原点,点A(2,4),点B(6,0)在边OB上有一动点P,过P作PC∥OA交AB于C,连接AP.
(Ⅰ)求△OAB的面积;
(Ⅱ)若设OP=x,△APC的面积为y,试用含x的式子表示y;
(Ⅲ)若有满足S△APC=$\frac{1}{m}$S△OAB的点P存在,求当m取得最小值时,点P的坐标(直接写出结果即可).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.已知一组数据1,2,0,-1,x,1的平均数是1,那么这组数据的方差是$\frac{5}{3}$.

查看答案和解析>>

同步练习册答案