精英家教网 > 初中数学 > 题目详情
精英家教网⊙O中,AB是直径,AC=8,BC=6,CD平分∠ACB,则CD=(  )
A、7
3
B、7
2
C、
7
2
3
D、
7
2
2
分析:根据直径所对的圆周角是直角,以及角平分线的定义可得∠ACD=∠BCD=45°,过A作AM⊥CD,过B作BN⊥CD,垂足分别为M、N,得到△ACM与△BCN都是等腰直角三角形,根据等腰直角三角形斜边与直角边的关系可得CM=
2
2
AC,BN=
2
2
BC,再利用角角边定理证明△ADM与△BDN全等,根据全等三角形对应边相等得到DN=AM,所以DN=CM,从而得到CM+CN=DN+CN=CD.
解答:精英家教网解:过A作AM⊥CD,过B作BN⊥CD,垂足分别为M、N,
∵AB为直径,CD平分∠ACB交⊙O于D,
∴∠ACD=∠BCD=45°,
∴△ACM与△BCN都是等腰直角三角形,AD=BD,
在Rt△ACM中,CM=
2
2
AC=
2
2
×8=4
2
,在Rt△BCN中,CN=
2
2
BC=
2
2
×6=3
2

∴CM+CN=7
2

∵AB是直径,
∴∠ADB=90°,
∴∠ADM+∠BDN=90°,
又∵∠BDN+∠DBN=90°,
∴∠ADM=∠DBN,
在△ADM与△BDN中,
∠ADM=∠DBN
∠AMD=∠DNB=90°
AD=BD

∴△ADM≌△BDN(AAS),
∴DN=AM,
又∵AM=CM(等腰直角三角形两直角边相等),
∴CM=DN,
∴CD=CN+DN=CN+CM=7
2

故选B.
点评:本题考查了圆周角定理,全等三角形的判定与性质,以及等腰直角三角形的判定与性质,作出辅助线构造出等腰直角三角形与全等三角形是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

13、如图,在⊙O中,AB是⊙O直径,∠BAC=40°,则∠ADC的度数是
50
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•海沧区一模)已知:在⊙O中,AB是直径,AC是弦,OE⊥AC于点E,过点C作直线FC,使∠FCA=∠AOE,交AB的延长线于点D.
(1)求证:FD是⊙O的切线;
(2)设OC与BE相交于点G,若OG=4,求⊙O半径的长;
(3)在(2)的条件下,当OE=6时,求图中阴影部分的面积.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图⊙O中,AB是直径,AC和AD是弦,且AD平分∠BAC,过D作AC的垂线交AC的延长线于E,
(1)求证:DE是⊙O的切线.
(2)若AE=4,AB=5,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•湖州一模)如图,在⊙O中,AB是直径,AD是弦,∠ADE=60°,∠C=30°.
(1)判断直线CD是否为⊙O的切线,请说明理由;
(2)若CD=3,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•宜宾)如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是
AD
的中点,弦CE⊥AB于点F,过点D的切线交EC的延长线于点G,连接AD,分别交CF、BC于点P、Q,连接AC.给出下列结论:
①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心;④AP•AD=CQ•CB.
其中正确的是
②③④
②③④
(写出所有正确结论的序号).

查看答案和解析>>

同步练习册答案