分析 首先根据开口方向确定a的取值范围,根据对称轴的位置确定b的取值范围,根据抛物线与y轴的交点确定c的取值范围,根据抛物线与x轴是否有交点确定b2-4ac的取值范围,根据图象和x=2的函数值即可确定4a+2b+c的取值范围,根据x=1的函数值可以确定b<a+c是否成立,根据x=-$\frac{b}{2a}$=1,c>0,得出b=-2a,即可判定a+2b+c>0是否成立.
解答 解:∵抛物线开口朝下,
∴a<0,
∵对称轴x=-$\frac{b}{2a}$=1,
∴b>0,
∵抛物线与y轴的交点在x轴的上方,
∴c>0,
∴abc<0,故①正确;
根据图象知道当x=2时,y=4a+2b+c>0,故②正确;
根据图象知道抛物线与x轴有两个交点,
∴b2-4ac>0,故③错误;
根据图象知道当x=-1时,y=a-b+c<0,
∴a+c<b,故④正确;
∵对称轴x=-$\frac{b}{2a}$=1,
∴b=-2a,
∴a+2b+c=-3a+c,
∵a<0,c>0,
∴a+2b+c=-3a+c>0,故⑤正确.
故答案为:①②④⑤.
点评 此题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
等级 | 成绩(分) | 频数(人数) | 频率 |
A | 90~100 | 19 | 0.38 |
B | 75~89 | m | x |
C | 60~74 | n | y |
D | 60以下 | 3 | 0.06 |
合计 | 50 | 1.00 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 了解全班同学每周进行体育锻炼的时间 | |
B. | 对旅客上飞机前进行的安检 | |
C. | 学校招聘教师,对应聘人员进行面试 | |
D. | 了解全市中小学生每天的零花钱 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com