精英家教网 > 初中数学 > 题目详情
在正方形ABCD中:
(1)已知:如图①,点E、F分别在BC、CD上,且AE⊥BF,垂足为M,求证:AE=BF.
(2)如图②,如果点E、F、G分别在BC、CD、DA上,且GE⊥BF,垂足M,那么GE、BF相等吗?证明你的结论.
(3)如图③,如果点E、F、G、H分别在BC、CD、DA、AB上,且GE⊥HF,垂足M,那么GE、HF相等吗?证明你的结论.
(1)证明:∵四边形ABCD是正方形,AE⊥BF,
∴∠BAE+∠ABM=90°,∠CBF+∠ABM=90°,
∴∠BAE=∠CBF,
∵在△ABE和△BCF中,
∠ABC=∠C=90°
∠BAE=∠CBF
AB=BC

∴△ABE≌△BCF(AAS),
∴AE=BF;

(2)GE=BF.
证明:如图②,过点A作ANGE,
∵ADBC,
∴四边形ANEG是平行四边形,
∴AN=GE,
∵GE⊥BF,
∴AN⊥BF,
由(1)可得△ABN≌△BCF,
∴AN=BF,
∴GE=BF;

(3)GE=HF.
证明:如图③,分别过点A、B作APGE,BQHF,
∵ADBC,ABDC,
∴四边形APEG、四边形BQFH为平行四边形,
∴AP=GE,BQ=HF,
∵GE⊥HF,
∴AP⊥BQ,
由(1)可得△ABP≌△BCQ,
∴AP=BQ,
∴GE=HF.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

已知正方形ABCD的边长是4,对角线AC、BD交于点O,点E在线段AC上,且OE=
2
3
6
,则∠ABE的度数______度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图甲,把一个边长为2的大正方形分成四个同样大小的小正方形,再连接大正方形的四边中点,得到了一个新的正方形(图中阴影部分),求:
(1)图甲中阴影部分的面积是多少?
(2)图甲中阴影部分正方形的边长是多少?
(3)如图乙,在数轴上以1个单位长度的线段为边作一个正方形,以表示数1的点为圆心,以正方形对角线长为半径画弧,交数轴负半轴于点A,求点A所表示的数是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点E、F在正方形ABCD的边AB、BC上,BE=CF,若CE=10cm,求DF的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在四边形ABCD中,点E是线段AD上的任意一点(E与A,D不重合),G,F,H分别是BE,BC,CE的中点.
(1)证明:四边形EGFH是平行四边形;
(2)在(1)的条件下,若EF⊥BC,且EF=
1
2
BC,证明:平行四边形EGFH是正方形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,正方形OABC的边长为1,点P在AB上,∠AOP=30°,OP的延长线交CB的延长线于点Q,求PA和BQ的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,已知∠EOF,点B、C在射线OF上,四边形ABCD是平行四边形,AC、BD相交于点M,连接OM.
(1)当OM⊥AC时,求证:OA=OC.
(2)如图2,当∠EOF=45°时,且四边形ABCD是边长为a的正方形时,求OM的长.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.
(1)求证:CE=CF;
(2)若G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?
(3)在(1)(2)条件下,若AB=BC=12,BE=4,求DE的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC,PF⊥CD,垂足分别为点E,F,连接AP,EF,给出下列四个结论:①AP=EF;②∠PFE=∠BAP;③PD=
2
EC;④△APD一定是等腰三角形.其中正确的结论有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

同步练习册答案