精英家教网 > 初中数学 > 题目详情

已知:如图,⊙O的内接△ABC中,∠BAC=45°,∠ABC=15°,AD∥OC并交BC的延长线于D,OC交AB于E.

【小题1】求∠D的度数;
【小题2】求证:AC2=AD·CE;
【小题3】求的值.


【小题1】解:如图,连结OB.

∵⊙O的内接△ABC中,∠BAC=45°,
∴∠BOC=2∠BAC=90°.
∵OB=OC,
∴∠OBC=∠OCB=45°.
∵AD∥OC,
∴∠D=∠OCB=45°.
【小题2】证明:∵∠BAC=45°,∠D=45°,
∴∠BAC=∠D.
∵AD∥OC,
∴∠ACE=∠DAC.
∴△ACE∽△DAC.

∴AC2=AD·CE.
【小题3】解法一:如图,延长BO交DA的延长线于F,连结OA.

∵AD∥OC,
∴∠F=∠BOC=90°.
∵∠ABC=15°,
∴∠OBA=∠OBC-∠ABC=30°.
∵OA=OB.
∴∠FOA=∠OBA+∠OAB=60°,∠OAF=30°.

∵AD∥OC,
∴△BOC∽△BFD.

的值为2.
解法二:作OM⊥BA于M,设⊙O的半径为r,可得

所以

解析

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,⊙O的内接四边形ABCD的对角线交于点M,点E、F分别为AB、CD的中点.
求证:∠OEM=∠OFM.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,⊙O的内接△ABC中,∠BAC=45°,∠ABC=15°,AD∥OC并交BC的延长线于D,精英家教网OC交AB于E.
(1)求∠D的度数;
(2)求证:AC2=AD•CE;
(3)求
BCCD
的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,⊙O的内接△ABC中,∠BAC=45°,∠ABC=15°,AD∥OC并交BC的延长线于D,OC交AB于E.

 

 

1.求∠D的度数;

2.求证:AC2=AD·CE;

3.求的值.

 

查看答案和解析>>

科目:初中数学 来源:2011-2012学年北京市九年级上学期期中考试数学卷 题型:解答题

 已知:如图,⊙O的内接△ABC中,∠BAC=45°,∠ABC =15°,ADOC并交BC的延长线于DOCABE

1.(1)求∠D的度数;

2.(2)求证:

3.(3)求的值。

 

查看答案和解析>>

科目:初中数学 来源:2012届北京市西城区九年级下学期期末检测数学卷 题型:解答题

已知:如图,⊙O的内接△ABC中,∠BAC=45°,∠ABC=15°,AD∥OC并交BC的延长线于D,OC交AB于E.

 

 

1.求∠D的度数;

2.求证:AC2=AD·CE;

3.求的值.

 

查看答案和解析>>

同步练习册答案