精英家教网 > 初中数学 > 题目详情
如图,AD是△ABC的中线,过点A作AE∥BC,过点B作BE∥AD交AE于点E,
(1)求证:AE=CD;
(2)当△ABC满足什么条件时,四边形ADBE是矩形?请说明理由.
分析:(1)根据平行四边形的判定推出平行四边形ADBE,推出AE=BD,根据中线得出BD=DC,求出即可;
(2)根据等腰三角形的三线合一定理求出AD⊥BC,推出∠BDA=90°,根据矩形的定义推出即可.
解答:证明:(1)∵AE∥BC,BE∥AD,
∴四边形ADBE是平行四边形,
∴AE=BD,
∵AD是△ABC的中线,
∴BD=CD,
∴AE=CD.

(2)当AB=AC时,四边形ADBE是矩形,理由是:
∵AB=AC,BD=CD,
∴AD⊥BC,即∠ADB=90°,
又∵四边形ADBE是平行四边形,
∴四边形ADBE是矩形.
点评:本题考查了等腰三角形的性质,平行四边形的性质和判定,矩形的性质等知识点的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

14、如图,AD是△ABC的高线,且AD=2,若将△ABC及其高线平移到△A′B′C′的位置,则A′D′和B′D′位置关系是
垂直
,A′D′=
2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AD是△ABC是角平分线,DE⊥AB于点E,DF⊥AC于点F,连接EF交AD于点G,则AD与EF的位置关系是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

16、已知:如图,AD是△ABC的角平分线,且 AB:AC=3:2,则△ABD与△ACD的面积之比为
3:2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AD是△ABC的边BC上的中线,已知AB=5cm,AC=3cm.
(1)求△ABD与△ACD的周长之差.
(2)若AB边上的高为2cm,求AC边上的高.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AD是△ABC的中线,CE是△ACD的中线,DF是△CDE的中线,如果△DEF的面积是2,那么△ABC的面积为(  )

查看答案和解析>>

同步练习册答案