精英家教网 > 初中数学 > 题目详情
写出下列命题的已知、求证,并完成证明过程.
命题:三角形的中位线平行于三角形的第三边并且等于第三边的一半.
已知:如图,
求证:
DE∥BC,DE=
1
2
BC
DE∥BC,DE=
1
2
BC
.证明:
如下
如下
分析:把命题的结论作为求证的内容,延长DE至F,使EF=DE,连接CF,通过证明△ADE≌△CFE和证明四边形BCFD是平行四边形即可证明三角形的中位线平行于三角形的第三边并且等于第三边的一半.
解答:证明:延长DE至F,使EF=DE,连接CF
∵E是AC中点,
∴AE=CE,
在△ADE和△CFE中,
DE=EF
∠AED=∠CEF
AE=CE

∴△ADE≌△CFE,
∴AD=CF,∠ADE=∠F
∴BD∥CF,
∵AD=BD,
∴BD=CF
∴四边形BCFD是平行四边形(一组对边平行且相等的四边形是平行四边形)
∴DF∥BC,DF=BC,
∴DE∥CB,DE=
1
2
BC.
点评:本题考查了三角形的中位线定理的证明,用到的知识点有全等三角形的判定和全等三角形的性质以及平行四边形的判定和性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网写出下列命题的已知、求证,并完成证明过程.
命题:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称:“等角对等边”).
已知:如图,
 

求证:
 

证明:

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•白下区一模)写出下列命题的已知、求证,并完成证明过程.
命题:如果平行四边形的一条对角线平分它的一个内角,那么这个平行四边形是菱形.
已知:如图,
在□ABCD中,对角线AC平分∠DAB(或∠DCB)
在□ABCD中,对角线AC平分∠DAB(或∠DCB)

求证:
□ABCD是菱形
□ABCD是菱形

证明:

查看答案和解析>>

科目:初中数学 来源:2012-2013学年江苏省扬州市九年级中考模拟数学试卷(解析版) 题型:解答题

写出下列命题的已知、求证,并完成证明过程.

命题:如果平行四边形的一条对角线平分它的一个内角,那么这个平行四边形是菱形.

已知:如图,                

求证:                  

证明:                             

 

查看答案和解析>>

科目:初中数学 来源:2010-2011学年南京市考数学一模试卷 题型:解答题

(7分)写出下列命题的已知、求证,并完成证明过程.

 命题:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称:“等角对等边”) .

已知:如图,___              _▲_                ____

求证:___              _▲_                ____

证明:

 

查看答案和解析>>

同步练习册答案