精英家教网 > 初中数学 > 题目详情
9.如图所示,将纸片△ABC沿着DE折叠压平,则∠A,∠1与∠2之间的数量关系是∠A=$\frac{1}{2}$(∠1+∠2).

分析 由折叠及邻补角的性质可知,∠1=180°-2∠ADE,∠2=180°-2∠AED,两式相加,结合已知可求∠ADE+∠AED的度数,在△ADE中,由内角和定理可求∠A的度数.

解答 解:根据折叠及邻补角的性质,得
∠1=180°-2∠ADE,∠2=180°-2∠AED,
∴∠1+∠2=360°-2(∠ADE+∠AED),
∴∠ADE+∠AED=$\frac{1}{2}$[360°-(∠1+∠2)]=180°-$\frac{1}{2}$(∠1+∠2),
∴在△ADE中,由内角和定理,得
∠A=180°-(∠ADE+∠AED)=180°-180°+$\frac{1}{2}$(∠1+∠2)=$\frac{1}{2}$(∠1+∠2).
故答案为:∠A=$\frac{1}{2}$(∠1+∠2).

点评 本题考查了折叠的性质,邻补角的性质,三角形内角和定理,关键是把∠1+∠2看作整体,对角的和进行转化.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

19.有三个连续的奇数,中间一个是n,则另外两个奇数的和为2n.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,AC分别切⊙O于D、E,作OQ⊥BC交⊙O于P,连DP、EP交BC于G、F,AF、AG分别交DG、EF于M、N.求证:OQ⊥MN.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.解方程:
(1)x2+2x=0;
(2)x2-4x-1=0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.将正整数依次按如表规律排成四列,请根据表中的排列规律回答下列问题:
第1列第2列第3列第4列
第1行123
第2行654
第3行789
第4行121110
(1)第6行第2列的数是多少?
(2)用含n的代数式表示第n行第3列的数;
(3)数2016位于第几行第几列?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,在△AOB中,OA=OB,∠AOB=50°,将△AOB绕O点顺时针旋转30°,得到△COD,OC交AB于点F,CD分别交AB、OB于点E、H.求证:EF=EH.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.已知:如图,在锐角△ABC中,BD,CE分别是△ABC的AC,AB边上的高,在CE上截取CP=AB,过点P作PG⊥BC于G点,在BD的延长线上截取BQ=AC,过点Q作QF⊥BC于F点,求证:PG+QF=BC.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点,过点E与AD平行的直线交射线AM于点N.
(1)当A、B、C三点在同一直线上时(如图1),求证:M为AN的中点;
(2)将图1中△BCE绕点B旋转,当A、B、E三点在同一直线上(如图2),求证:△CAN为等腰直角三角形;
(3)将图1中△BCE绕点B旋转到图3的位置时,(2)中的结论是否仍然成立?若成立,试证明之;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.解方程:
(1)$\frac{1}{x+1}$+$\frac{2}{x-1}$=$\frac{4}{{{x^2}-1}}$
(2)$\frac{3}{x-2}$=$\frac{x}{2-x}$-2.

查看答案和解析>>

同步练习册答案