精英家教网 > 初中数学 > 题目详情
13.如图,EF∥AB,∠DCB=80°,∠CBF=20°,∠EFB=120°,判断直线CD与AB有怎样的位置关系,并说明理由.

分析 先根据EF∥AB求出∠ABF的度数,故可得出∠ABC的度数,由平行线的判定定理即可得出结论.

解答 解:∵EF∥AB,∠EFB=120°,
∴∠ABF=180°-120°=60°.
∵∠CBF=20°,
∴∠ABC=60°+20°=80°.
∵∠DCB=80°,
∴∠DCB=∠ABC,
∴CD∥AB.

点评 本题考查的是平行线的判定与性质,用到的知识点为:两直线平行,同旁内角互补.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.已知∠ACD=90°,AC=DC,MN是过点A的直线,过点D作DB⊥MN于点B,连接CB.

(1)问题发现
如图(1),过点C作CE⊥CB,与MN交于点E,则易发现BD和EA之间的数量关系为BD=AE,BD、AB、CB之间的数量关系为BD+AB=$\sqrt{2}$CB.
(2)拓展探究
当MN绕点A旋转到如图(2)位置时,BD、AB、CB之间满足怎样的数量关系?请写出你的猜想,并给予证明.
(3)解决问题
当MN绕点A旋转到如图(3)位置时(点C、D在直线MN两侧),若此时∠BCD=30°,BD=2时,CB=$\sqrt{6}-\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,正方形ABCD顶点A,D在⊙O上,边BC经过⊙O上一定P,且PF平分∠AFC,边 AB,CD分别与⊙O相交于点E、F,连接EF.
(1)求证:BC是⊙O的切线;
(2)若FC=2,求PC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.如图,是中心对称图形但不是轴对称图形的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.有10名合作伙伴承包了一块土地准备种植蔬菜,他们每人可种茄子3亩或辣椒2亩,已知每亩茄子平均可收入0.5万元,每亩辣椒平均可收入0.8万元,要使总收入不低于15.6万元,则最多只能安排多少人种茄子?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.计算:
(1)(-1)2004+$(-\frac{1}{2})^{-2}$-(3.14-π)0
(2)1232-124×122
(3(3x2y)2)•(-15xy3)÷(-9x4y2
(4)(a+b-c)(a-b+c)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.解方程:$\frac{a-b}{a+2b}$÷$\frac{{{a^2}-{b^2}}}{{{a^2}+4ab+4{b^2}}}$-1,其中a=3+$\sqrt{5}$,b=3-$\sqrt{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.计算:2-2-2cos60°+|-$\sqrt{27}$|+(π-3.14)0

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.类比特殊四边形的学习,我们可以定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.
【探索体验】
(1)如图1,已知在四边形ABCD中,∠A=40°,∠B=100°,∠C=120°.求证:四边形ABCD是“等对角四边形”.
(2)如图2,若AB=AD=a,CB=CD=b,且a≠b,那么四边形ABCD是“等对角四边形”吗?试说明理由.
【尝试应用】
(3)如图3,在边长为6的正方形木板ABEF上裁出“等对角四边形”ABCD,若已经确定DA=4m,∠DAB=60°,是否在正方形ABEF内(包括边上)存在一点C,使四边形ABCD以∠DAB=∠BCD为等对角的四边形的面积最大?若存在,试求出四边形ABCD的最大面积;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案