精英家教网 > 初中数学 > 题目详情

【题目】某市一湖的湖心岛有一颗百年古树,当地人称它为“乡思柳”,不乘船不易到达,每年初春时节,人们喜欢在“聚贤亭”观湖赏柳.小红和小军很想知道“聚贤亭”与“乡思柳”之间的大致距离,于是,有一天,他们俩带着侧倾器和皮尺来测量这个距离.测量方法如下:如图,首先,小军站在“聚贤亭”的A处,用侧倾器测得“乡思柳”顶端M点的仰角为23°,此时测得小军的眼睛距地面的高度AB为1.7米,然后,小军在A处蹲下,用侧倾器测得“乡思柳”顶端M点的仰角为24°,这时测得小军的眼睛距地面的高度AC为1米.请你利用以上测得的数据,计算“聚贤亭”与“乡思柳”之间的距离AN的长(结果精确到1米).(参考数据:sin23°0.3907,cos23°0.9205,tan23°0.4245,sin24°0.4067,cos24°0.9135,tan24°0.4452.)

【答案】34米

【解析】

试题分析:作BDMN,CEMN,垂足分别为点D、E,设AN=x米,则BD=CE=x米,再由锐角三角函数的定义即可得出结论.

试题解析:如图,作BDMN,CEMN,垂足分别为点D、E,设AN=x米,则BD=CE=x米,在RtMBD中,MD=xtan23°,在RtMCE中,ME=xtan24°,ME﹣MD=DE=BC,xtan24°﹣xtan23°=1.7﹣1,x=,解得x34(米).

答:“聚贤亭”与“乡思柳”之间的距离AN的长约为34米.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】ABC的面积为1.

如图1,分别将AC,BC边2等分,D1,E1是其分点,连接AE1,BD1交于点F1,得到四边形CD1F1E1,其面积S1=

如图2,分别将AC,BC边3等分,D1,D2,E1,E2是其分点,连接AE2,BD2交于点F2,得到四边形CD2F2E2,其面积S2=

如图3,分别将AC,BC边4等分,D1,D2,D3,E1,E2,E3是其分点,连接AE3,BD3交于点F3,得到四边形CD3F3E3,其面积S3=

按照这个规律进行下去,若分别将AC,BC边(n+1)等分,…,得到四边形CDnEnFn,其面积S=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】春种一粒粟,秋收万颗子,唐代诗人李绅这句诗中的即谷子(去皮后则称为小米),被誉为中华民族的哺育作物.我省有着小杂粮王国的美誉,谷子作为我省杂粮面积为2000万亩,年总产量为150万吨,我省谷子平均亩产量为160kg,国内其他地区谷子的平均亩产量为60kg请解答下列问题:

(1)求我省2016年谷子的种植面积是多少万亩.

(2)2017年,若我省谷子的平均亩产量仍保持160kg不变,要使我省谷子的年总产量不低于52万吨,那么,今年我省至少应再多种植多少万亩的谷子?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】长度分别为3cm5cm7cm9cm的四根木棒,能搭成(首尾连结)三角形的个数为( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】养成良好的早锻炼习惯,对学生的学习和生活都非常有益,某中学为了了解七年级学生的早锻炼情况,校政教处在七年级随机抽取了部分学生,并对这些学生通常情况下一天的早锻炼时间x(分钟)进行了调查.现把调查结果分成A、B、C、D四组,如下表所示,同时,将调查结果绘制成下面两幅不完整的统计图.

请你根据以上提供的信息,解答下列问题:

(1)补全频数分布直方图和扇形统计图;

(2)所抽取的七年级学生早锻炼时间的中位数落在 区间内;

(3)已知该校七年级共有1200名学生,请你估计这个年级学生中约有多少人一天早锻炼的时间不少于20分钟.(早锻炼:指学生在早晨7:007:40之间的锻炼)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法不正确的是(

A. 等腰三角形是轴对称图形

B. 三角相等的三角形是等边三角形

C. 如果两个三角形成轴对称,那么这两个三角形一定全等

D. A,B两点关于直线MN对称,则AB垂直平分MN

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列各式从左到右的变形,是因式分解的是(
A.x2﹣9+6x=(x+3)(x﹣3)+6x
B.x2﹣8x+16=(x﹣4)2
C.(x+5)(x﹣2)=x2+3x﹣10
D.6ab=2a3b

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,请看下面的案例.

(1)如图1,已知△ABC,分别以AB、AC为边,在BC同侧作等边三角形ABD和等边三角形ACE,连接CD,BE.
通过证明△ ADC ≌△ ABE ,得到DC=BE;
(2)如图2,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点,顺次连接E、F、G、H,得到四边形EFGH,我们称四边形EFGH为四边形ABCD的中点四边形,连接BD,利用三角形中位线的性质,可得EH∥BD,EH= BD,同理可得FG∥BD,FG= BD,所以EH∥FG,EH=FG,所以四边形EFGH是平行四边形;

拓展应用
①如图3,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想四边形EFGH的形状,并证明;
(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,四边形EFGH的形状是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】P(2,-3)关于x轴对称点的坐标是 ( )

A. (—2,-3) B. (2,3) C. (-2,3) D. (-3,2)

查看答案和解析>>

同步练习册答案