精英家教网 > 初中数学 > 题目详情
4.化简:
(1)$\sqrt{8}$+$\sqrt{18}$+$\sqrt{12}$       
(2)2$\sqrt{12}$-6$\sqrt{\frac{1}{3}}$+3$\sqrt{48}$
(3)$\sqrt{30}$×$\frac{5}{2}$$\sqrt{2\frac{2}{3}}$÷3$\sqrt{2\frac{1}{2}}$
(4)$\sqrt{(x-3)^{2}}-(\sqrt{2-x})^{2}$.

分析 (1)先把二次根式进行化简,合并同类二次根式即可;
(2)先把二次根式进行化简,合并同类二次根式;
(3)根据二次根式的乘除法法则计算;
(4)根据二次根式的性质化简、计算即可.

解答 解:(1)原式=2$\sqrt{2}$+3$\sqrt{2}$+2$\sqrt{3}$
=5$\sqrt{2}$+2$\sqrt{3}$;
(2)原式=4$\sqrt{3}$-2$\sqrt{3}$+12$\sqrt{3}$
=14$\sqrt{3}$;
(3)原式=$\frac{5}{2}$$\sqrt{80}$×$\frac{1}{3}$$\sqrt{\frac{2}{5}}$
=$\frac{5}{6}$×4$\sqrt{2}$
=$\frac{10}{3}$$\sqrt{2}$;
(4)原式=3-x-2+x
=1.

点评 本题考查的是二次根式的混合运算,掌握二次根式的性质:$\sqrt{{a}^{2}}$=|a|是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

1.如图,已知直线y1=-$\frac{1}{2}$x+1与x轴交于点A,与直线y2=-$\frac{3}{2}$x交于点B.
(1)求△AOB的面积;
(2)求y1>y2时x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.已知:在正方形ABCD中,AB=2,点P是射线AB上的一点,联结PC、PD,点E、F分别是AB和PC的中点,联结EF交PD于点Q.
(1)如图1,当点P与点B重合时,△QPE的形状是等腰直角三角形
(2)如图2,当点P在AB的延长线上时,设BP=x,EF=y,求y关于x的函数关系式,并写出定义域;
(3)当点Q在边BC上时,求BP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.某航模制造厂开发了一款带有发动机的新式航模,计划一年生产安装240艘.由于抽调不出足够的熟练工来完成新式航模的安装,工厂决定招聘一些新工人;他们经过培训后上岗,也能独立进行航模的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8艘航模;2名熟练工和3名新工人每月可安装14艘航模.
(1)每名熟练工和新工人每月分别可以安装多少艘航模?
(2)如果工厂招聘n(0<n<10)名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?
(3)在(2)的条件下,工厂给安装航模的每名熟练工每月发2000元的工资,给每名新工人每月发1200元的工资,那么工厂应招聘多少名新工人,使新工人的数量多于熟练工,同时工厂每月支出的工资总额W(元)尽可能的少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.某中学在开学前去商场购进A、B两种品牌的足球,购买A品牌足球共花费3000元,购买B品牌足球共花费1600元,且购买A品牌足球数量是购买B品牌足球的3倍,已知购买一个B品牌足球比购买一个A品牌足球多花30元.(1)求购买一个A品牌、一个B品牌足球各需多少元?
(2)为了进一步发展“校园足球”,学校在开学后再次购进了A、B两种品牌的足球,每种品牌的足球不少于15个,总花费恰好为2268元,且在购买时,商场对两种品牌的足球的销售单价进行了调整,A品牌足球销售单价比第一次购买时提高了8%,B品牌足球按第一次购买时销售单价的9折出售.那么此次有哪些购买方案?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.(1)3$\sqrt{3}$+$\sqrt{2}$-2$\sqrt{2}$-2$\sqrt{3}$             
(2)2$\sqrt{5}$(4$\sqrt{20}$-3$\sqrt{45}$+2$\sqrt{5}$)
(3)($\sqrt{24}$-$\sqrt{2}$)-($\sqrt{8}$+$\sqrt{6}$)              
(4)(2$\sqrt{48}$-3$\sqrt{27}$)÷$\sqrt{6}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.解分式方程
(1)$\frac{1}{x}$+$\frac{1}{x+1}$=$\frac{5}{2x+2}$;
(2)$\frac{x-2}{x+2}$-$\frac{16}{{x}^{2}-4}$=$\frac{x+2}{x-2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,四边形ABCD是平行四边形,AC是对角线,将△ADC绕点A逆时针旋转90°后得到△AD′C′,若∠ACB=32°,BC=2,求∠C′AD的度数及AD′的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.不等式$\frac{1}{2}$x-5≥3的最小整数解是x=16.

查看答案和解析>>

同步练习册答案