精英家教网 > 初中数学 > 题目详情
8.解不等式组$\left\{\begin{array}{l}{4(x+1)+3>x①}\\{\frac{x-4}{2}≤\frac{x-5}{3}②}\end{array}\right.$,并把解集在数轴上表示出来,再求出符合条件的正整数解.

分析 分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.

解答 解:解不等式①,得:x>-$\frac{7}{3}$,
解不等式②,得:x≤2,
∴不等式组的解集为-$\frac{7}{3}$<x≤2,
将解集表示在数轴上如下:

其正整数解为1.

点评 本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

18.如图,?ABCD的对角线AC、BD相交于点O,若AB=5cm,BC=7cm,△COD的周长是17cm,则△BOC的周长是19cm.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.仅用无刻度的直尺作出符合下列要求的图形.

(1)如图甲,在射线OP、OQ上已截取OA=OB,OE=OF.试过点O作射线OM,使得OM将∠POQ平分;
(2)如图乙,在射线OP、OQ、OR上已截取OA=OB=OC,OE=OF=OG(其中OP、OR在同一根直线上).试过点O作一对射线OM、ON,使得OM⊥ON.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,四边形ABCD的对角线AC、BD相交于点O,且O是AC的中点,AE=CF,DF∥BE.
(1)求证:△BOE≌△DOF;
(2)求证:四边形ABCD是平行四边形;
(3)当OD与AC满足怎样的数量关系时,四边形ABCD是矩形?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,在四边形OABC中,OA∥BC,∠OAB=90°,O为原点,点C的坐标为(2,8),点A的坐标为(26,0),点D从点B出发,以每秒1个单位长度的速度沿BC向点C运动,点E同时从点O出发,以每秒3个单位长度的速度沿折线OAB运动,当点E达到点B时,点D也停止运动,从运动开始,设D(E)点运动的时间为t秒.
(1)当t为何值时,四边形ABDE是矩形;
(2)当t为何值时,四边形OEDC是平行四边形?
(3)连接AD,记△ADE的面积为S,求S与t的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,?ABCD中,G是CD的中点,E是边长AD上的动点,EG的延长线与BC的延长线相交于点F,连接CE,DF.
(1)求证:四边形CEDF是平行四边形.
(2)填空:若AB=3cm,BC=5cm,∠B=60°,则①当AE=$\frac{7}{2}$时,四边形CEDF是矩形;②当AE=2时,四边形CEDF是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.如图,点F在平行四边形ABCD的边AB上,且AF:BF=1:2,连接CF并延长,交DA的延长线于点E,若△AEF的面积为2,则平行四边形ABCD的面积为24.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,以?ABCD的边AD、BC为边向外作等边三角形ADE和BCF,连接CE、AF,求证:四边形AECF是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.先化简再求值:(x+2y)(x-2y)-2y(x-2y),其中$x=-1,y=\frac{1}{2}$.

查看答案和解析>>

同步练习册答案