精英家教网 > 初中数学 > 题目详情
如图,?ABCD中,点O是AC与BD的交点,过点O的直线与BA、DC的延
长线分别交于点E、F.

(1)求证:△AOE≌△COF;
(2)请连接EC、AF,则EF与AC满足什么条件时,四边形AECF是矩形,并说明理由.
解:(1)证明:∵四边形ABCD是平行四边形,∴AO=OC,AB∥CD。
∴∠E=∠F又∠AOE=∠COF。∴△AOE≌△COF(ASA)。
(2)连接EC、AF,则EF与AC满足EF=AC时,四边形AECF是矩形。理由如下:

由(1)可知△AOE≌△COF,
∴OE=OF。
∵AO=CO,
∴四边形AECF是平行四边形。
∵EF=AC,
∴四边形AECF是矩形。

试题分析:(1)根据平行四边形的性质和全等三角形的证明方法证明即可。
(2)连接EC、AF,则EF与AC满足EF=AC是,四边形AECF是矩形,首先证明四边形AECF是平行四边形,再根据对角线相等的平行四边形为矩形即可证明。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

已知梯形的中位线长是4cm,下底长是5cm,则它的上底长是     cm.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

我们知道,矩形是特殊的平行四边形,所以矩形除了具备平行四边形的一切性质还有其特殊的性质;同样,黄金矩形是特殊的矩形,因此黄金矩形有与一般矩形不一样的知识.
已知平行四边形ABCD,∠A=60°,AB=2a,AD=a.

(1)把所给的平行四边形ABCD用两种方式分割并作说明(见题答卡表格里的示例);
要求:用直线段分割,分割成的图形是学习过的特殊图形且不超出四个.
(2)图中关于边、角和对角线会有若干关系或问题.现在请计算两条对角线的长度.
要求:计算对角线BD长的过程中要有必要的论证;直接写出对角线AC的长.
解:在表格中作答
分割图形
     分割或图形说明
示例

示例①分割成两个菱形。
②两个菱形的边长都为a,锐角都为60°。

 

 

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,矩形ABCD的面积为20cm2,对角线交于点O;以AB、AO为邻边做平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边做平行四边形AO1C2B;…;依此类推,则平行四边形AO4C5B的面积为

A.cm2   B.cm2    C.cm2      D.cm2

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,将边长为4的正方形ABCD的一边BC与直角边分别是2和4的Rt△GEF的
一边GF重合.正方形ABCD以每秒1个单位长度的速度沿GE向右匀速运动,当点A和点E重合时正方形停止运
动.设正方形的运动时间为t秒,正方形ABCD与Rt△GEF重叠部分面积为s,则s关于t的函数图象为
A.B.
C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿AE对折,使得点B落在边AD上的点B1处,折痕与边BC交于点E,则CE的长为【   】
A.6cmB.4cm C.2cm D.1cm

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,ABCD的周长为36,对角线AC,BD相交于点O.点E是CD的中点,BD=12,则△DOE的周长为     

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,P为正方形ABCD的边AD上的一个动点,AE⊥BP,CF⊥BP,垂足分别为点E、F,已知AD=4.

(1)试说明AE2+CF2的值是一个常数;
(2)过点P作PM∥FC交CD于点M,点P在何位置时线段DM最长,并求出此时DM的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,若MA=MC.

(1)求证:CD=AN;
(2)若AC⊥DN,∠CAN=30°,MN=1,求四边形ADCN的面积.

查看答案和解析>>

同步练习册答案