A. | 22.5° | B. | 30° | C. | 36° | D. | 45° |
分析 根据黄金分割的定义得到AD2=BD•AB,而AD=AC=BC,则BC2=BD•AB,根据相似三角形的判定得△BCD∽△BAC,则∠A=∠BCD,设∠A=x,则∠B=x,∠BCD=x,根据三角形外角性质得∠ADC=∠BCD+∠B=2x,所以∠ACD=∠ADC=2x,然后根据三角形内角和定理得到x+2x+x+x=180°,再解方程即可.
解答 解:∵点D是线段AB的一个黄金分割点,
∴AD2=BD•AB,
∵AD=AC=BC,
∴BC2=BD•AB,
即BC:BD=AB:BC,
而∠ABC=∠CBD,
∴△BCD∽△BAC,
∴∠A=∠BCD,
设∠A=x,则∠B=x,∠BCD=x,
∴∠ADC=∠BCD+∠B=2x,
而AC=AD,
∴∠ACD=∠ADC=2x,
∴x+2x+x+x=180°,解得x=36°,
即∠A=36°.
故选:C.
点评 本题考查了黄金分割:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.其中AC=$\frac{\sqrt{5}-1}{2}$AB≈0.618AB,并且线段AB的黄金分割点有两个.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 若$\frac{AD}{AC}$=$\frac{DE}{BC}$,则△ADE与△ABC相似 | B. | 若$\frac{AD}{DC}$=$\frac{AE}{EB}$,则△ADE与△ABC相似 | ||
C. | 若$\frac{AD}{AB}$=$\frac{AE}{AC}$,则△ADE与△ABC相似 | D. | 若∠ADE=∠B,则△ADE与△ABC相似 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 386.61×108 | B. | 0.38661×1011 | C. | 3.8661×1010 | D. | 38.661×109 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com