若一个三角形的三边长均满足方程x2-6x+8=0,则此三角形的周长为 .
【答案】分析:求△ABC的周长,即是确定等腰三角形的腰与底的长求周长.首先求出方程的根,根据三角形三边关系定理列出不等式,然后解不等式即可.
解答:解:解方程x2-6x+8=0得x1=4,x2=2;
当4为腰,2为底时,4-2<4<4+2,能构成等腰三角形,周长为4+2+4=10;
当2为腰,4为底时4-2≠<2<4+2不能构成三角形,
当等腰三角形的三边分别都为4,或者都为2时,构成等边三角形,周长分别为6,12,故△ABC的周长是6或10或12.
点评:本题从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.