精英家教网 > 初中数学 > 题目详情

【题目】已知抛物线C1:y=﹣x2+2mx+1(m为常数,且m≠0)的顶点为A,与y轴交于点C;抛物线C2与抛物线C1关于y轴对称,其顶点为B.若点P是抛物线C1上的点,使得以A、B、C、P为顶点的四边形为菱形,则m为( )
A.
B.
C.
D.

【答案】A
【解析】易知:C(0,1),A(m,m2+1);若以A、B、C、P为顶点的四边形为菱形,则CP∥AB①,CP=AP②;

由①得:点P与点C纵坐标相同,将y=1代入C1,得:x=0或x=2m,即P(2m,1);

由②得:(2m)2=m2+(m2+1﹣1)2,即m2=3,解得m=±

所以答案是:A.


【考点精析】解答此题的关键在于理解二次函数图象的平移的相关知识,掌握平移步骤:(1)配方 y=a(x-h)2+k,确定顶点(h,k)(2)对x轴左加右减;对y轴上加下减.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某服装店购进一批甲、乙两种款型时尚T恤衫,甲种款型共用了7800元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.

1)甲、乙两种款型的T恤衫各购进多少件?

2)商店进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完 这批T恤衫商店共获利多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y= x2+mx+n(n≠0)与直线y=x交于A、B两点,与y轴交于点C,OA=OB,BC∥x轴.

(1)求抛物线的解析式;
(2)设D、E是线段AB上异于A、B的两个动点(点E在点D的上方),DE= ,过D、E两点分别作y轴的平行线,交抛物线于F、G,若设D点的横坐标为x,四边形DEGF的面积为y,求x与y之间的关系式,写出自变量x的取值范围,并回答x为何值时,y有最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等边△ABC中,BMABC内部的一条射线,且,点A关于BM的对称点为D,连接ADBDCD,其中ADCD的延长线分别交射线BM于点EP

(1)依题意补全图形;

(2)若ABM ,求BDC 的大小(用含的式子表示);

(3)用等式表示线段PBPCPE之间的数量关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把一副三角板(直角三角板和直角三角板,其中)的直角顶点重叠在一起.

1)如图1,当平分时,是多少度?

2)如图2,当不平分时,是多少度?

3)当的余角的4倍等于时,求此时的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,小慧从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,此时需要将方向调整到与出发时一致,则方向的调整应为(

A.左转80°B.右转80°C.左转100°D.右转100°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知下列方程:①;②0.3x1;③;④x24x3;⑤x6;⑥x+2y0.其中一元一次方程的个数是(  )

A. 2B. 3C. 4D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知等腰RtABCCDEAC=BC,CD=CE,连接BEADPBD中点,MAB中点、NDE中点,连接PMPNMN.

1)试判断PMN的形状,并证明你的结论;

2)若CD=5AC=12,求PMN的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,EFAD,∠1 =2,∠BAC = 70°。将求∠AGD的过程填写完整。因为EFAD,所以 2 = 。又因为 1 = 2,所以 1 = 3 所以AB 。所以∠BAC + = 180°。又因为∠BAC = 70°,所以∠AGD =

查看答案和解析>>

同步练习册答案