精英家教网 > 初中数学 > 题目详情
已知:如图,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.
(1)求证:∠APB=∠BPH;
(2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论.
分析:(1)根据翻折变换的性质得出∠PBC=∠BPH,进而利用平行线的性质得出∠APB=∠PBC即可得出答案;
(2)首先证明△ABP≌△QBP,进而得出△BCH≌△BQH,即可得出PD+DH+PH=AP+PD+DH+HC=AD+CD=8;
解答:(1)证明:∵PE=BE,
∴∠EBP=∠EPB.
又∵∠EPH=∠EBC=90°,
∴∠EPH-∠EPB=∠EBC-∠EBP.
即∠PBC=∠BPH.
又∵AD∥BC,
∴∠APB=∠PBC.
∴∠APB=∠BPH.

(2)解:△PHD的周长不变为定值8.
证明:过B作BQ⊥PH,垂足为Q.
由(1)知∠APB=∠BPH,
在△ABP和△QBP中,
∠APB=∠BPH
∠A=∠BQP
BP=BP

∴△ABP≌△QBP(AAS).
∴AP=QP,AB=QB.
又∵AB=BC,
∴BC=BQ.
又∵∠C=∠BQH=90°,BH=BH,
∴Rt△BCH≌Rt△BQH(HL).
∴CH=QH.
∴△PHD的周长为:PD+DH+PH=AP+PD+DH+HC=AD+CD=8.
点评:此题主要考查了翻折变换的性质以及全等三角形的判定与性质.此题难度适中,注意掌握折叠前后图形的对应关系,注意掌握数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图是用矩形厚纸片(厚度不计)做长方体包装盒的示意图,阴影部分是裁剪掉的部分.精英家教网沿图中实线折叠做成的长方体纸盒的上下底面是正方形,有三处矩形形状的“舌头”用来折叠后粘贴或封盖.
(1)若用长31cm,宽26cm的矩形厚纸片,恰好能做成一个符合要求的包装盒,盒高是盒底边长的2.5倍,三处“舌头”的宽度相等.求“舌头”的宽度和纸盒的高度;
(2)现有一张40cm×35 cm的矩形厚纸片,按如图所示的方法设计包装盒,用来包装一个圆柱形工艺笔筒,已知该种笔筒的高是底面直径2.5倍,要求包装盒“舌头”的宽度为2cm(如有多余可裁剪),问这样的笔筒底面直径最大可以为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•重庆)已知,在矩形ABCD中,E为BC边上一点,AE⊥DE,AB=12,BE=16,F为线段BE上一点,EF=7,连接AF.如图1,现有一张硬质纸片△GMN,∠NGM=90°,NG=6,MG=8,斜边MN与边BC在同一直线上,点N与点E重合,点G在线段DE上.如图2,△GMN从图1的位置出发,以每秒1个单位的速度沿EB向点B匀速移动,同时点P从A点出发,以每秒1个单位的速度沿AD向点D匀速移动,点Q为直线GN与线段AE的交点,连接PQ.当点N到达终点B时,△GMN和点P同时停止运动.设运动时间为t秒,解答下列问题:

(1)在整个运动过程中,当点G在线段AE上时,求t的值;
(2)在整个运动过程中,是否存在点P,使△APQ是等腰三角形?若存在,求出t的值;若不存在,说明理由;
(3)在整个运动过程中,设△GMN与△AEF重叠部分的面积为S.请直接写出S与t之间的函数关系式以及自变量t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

现有一张边长为a的大正方形卡片和三张边长为b的小正方形卡片(
12
a<b<a
)如图1,取出两张小卡片放入大卡片内拼成的图案如图2,再重新用三张小正方形卡片放入大卡片内拼成的图案如图3.已知图3中的阴影部分的面积比图2中的阴影部分的面积大2ab-6,则小正方形卡片的面积b2=
2
2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.
(1)求证:∠APB=∠BPH;
(2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论.

查看答案和解析>>

同步练习册答案