【题目】如图,是的直径,为上一点,是半径上一动点(不与,重合),过点作射线,分别交弦,于,两点,过点的切线交射线于点.
(1)求证:.
(2)当是的中点时,
①若,试证明四边形为菱形;
②若,且,求的长度.
【答案】(1)见解析;(2)①见解析;②9
【解析】
(1)连接OC,根据切线的性质得出OC⊥CF以及∠OBC=∠OCB得∠FCD=∠FDC,可证得结论;
(2)①如图2,连接OC,OE,BE,CE,可证△BOE,△OCE均为等边三角形,可得OB=BE=CE=OC,可得结论;
②设AC=3k,BC=4k(k>0),由勾股定理可求k=6,可得AC=18,BC=24,由面积法可求PE,由勾股定理可求OP的长.
(1)连接OC,
∵CF是⊙O的切线,
∴OC⊥CF,
∴∠OCF=90°,则∠OCB+∠DCF=90°,
∵OC=OB,
∴∠OCB=∠OBC,
∵PD⊥AB,
∴∠BPD=90°,则∠OBC+∠BDP=90°,
∴∠BDP=∠DCF,
∵∠BDP=∠CDF,
∴∠DCF=∠CDF,
∴FC=FD;
(2)①如图2,连接OC、OE、BE、CE,
∵AB是直径,
∴∠ACB=90°,
∵∠BAC=60°,
∴∠BOC=120°,
∵点E是的中点,
∴∠BOE=∠COE=60°,
∵OB=OE=OC,
∴△BOE,△OCE均为等边三角形,
∴OB=BE=CE=OC,
∴四边形BOCE是菱形;
②∵,
∴设AC=3k,BC=4k(k>0),
由勾股定理得AC2+BC2=AB2,即(3k)2+(4k)2=302,
解得k=6,
∴AC=18,BC=24,
∵点E是的中点,
∴OE⊥BC,BH=CH=12,
∴S△OBE=OE×BH=OB×PE,即15×12=15PE,
解得:PE=12,
由勾股定理得OP=.
科目:初中数学 来源: 题型:
【题目】如图1,已知A、B、C是⊙O上的三点,AB=AC,∠BAC=120°.
(1)求证:⊙O的半径R=AB;
(2)如图2,若点D是∠BAC所对弧上的一动点,连接DA,DB,DC.
①探究DA,DB,DC三者之间的数量关系,并说明理由;
②若AB=3,点C'与C关于AD对称,连接C'D,点E是C'D的中点,当点D从点B运动到点C时,求点E的运动路径长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是小文设计的“过圆外一点作圆的切线”的作图过程.已知:和圆外一点.求作:过点的的切线.作法:①连接;②以为直径作,交于点,;③作直线,;所以直线,为的切线.
根据小文设计的作图过程,完成下面的证明.
证明:连接,.
∵为的直径,
∴=∠________=________
(________)(填推理的依据).
∴,________.
∵,为
∴直线,为的切线(________)(填推理的依据).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,,以AB为直径的半圆O交AC于点D,点E是上不与点B,D重合的任意一点,连接AE交BD于点F,连接BE并延长交AC于点G.
(1)求证:;
(2)填空:
①若,且点E是的中点,则DF的长为 ;
②取的中点H,当的度数为 时,四边形OBEH为菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=AC=2,∠B=30°,△ABC绕点A逆时针旋转α(0<α<120°)得到,与BC,AC分别交于点D,E.设,的面积为,则与的函数图象大致为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,动点从点出发,在边上以每秒的速度向点匀速运动,同时动点从点出发,在边上以每秒的速度向点匀速运动,运动时间为秒,连接.若以为直径的与的边相切,则的值为_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,动点在平面直角坐标系中,按图中箭头所示方向运动,第1次从原点运动到点(1,2),第2次接着运动到点(2,0),第3次接着运动到点(3,1),第4次接着运动到点(4,0),……,按这样的运动规律,经过第27次运动后,动点的坐标是( )
A.(26,0)B.(26,1)C.(27,1)D.(27,2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图1,六边形中,,,.
(1)找出这个六边形中所有相等的内角_______.证明其中的一个结论.
(2)如果,证明对角线,互相平分;
(3)如图,如果,,,,,对角线平分对角线,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学对该校学生进行了“你喜欢的运动项目”的情况问卷调查,在全部调查问卷中,随机抽取了部分学生的调查问卷进行了分析整理,得到了如下的样本统计图表和扇形统计图:
(1)求m,n的值;
(2)该校学生总数为500人,学校决定按比例在B,C,D类学生中抽取学生进行课余训练,其比例为B类20%,C,D类各取60%,请你估计该校参加课余训练的学生数;
(3)随机抽取的部分学生的调查问卷中,若C类运动项目的4位学生中有3位男生,1位女生,请用列举法求出在C类中随机抽出2位学生进行专家培训,其中有1位女生的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com