【题目】已知,AB是⊙O的直径,AB=8,点C在⊙O的半径OA上运动,PC⊥AB,垂足为C,PC=5,PT为⊙O的切线,切点为T.
(1)如图1,当C点运动到O点时,求PT的长;
(2)如图2,当C点运动到A点时,连接PO、BT,求证:PO∥BT;
(3)如图3,设PT=y,AC=x,求y与x的解析式并求出y的最小值.
【答案】(1)PT=3;(2)见解析;(3)y=,y最小=3.
【解析】
(1)连接OT,根据题意,由勾股定理可得出PT的长;
(2)连接OT,则OP平分劣弧AT,则∠AOP=∠B,从而证出结论;
(3)设PC交⊙O于点D,延长线交⊙O于点E,由相交弦定理,可得出CD的长,再由切割线定理可得出y与x之间的关系式,进而求得y的最小值.
解:如图(1),连接OT,
∵PC=5,OT=4,
∴由勾股定理得,
(2)证明:如图(2)连接OT,
∵PT,PC为⊙O的切线,
∴∠OPA=∠OPT,∠PAO=∠PTO,
∴∠POA=∠POT,
∵∠AOT=2∠B,
∴∠AOP=∠B,
∴PO∥BT;
(3)解:如图(3),连接PO,PT
∵AB是⊙O的直径,AB=8,AC=x
∴CO=4﹣x;
又∵PC⊥AB
∴
∴y=
∴.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象与x轴交于A、B两点,A点的坐标为(﹣3,0),B点在原点的左侧,与y轴交于点C(0,3),点P是直线BC上方的抛物线上一动点
(1)求这个二次函数的表达式;
(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C(如图1所示),那么是否存在点P,使四边形POP′C为菱形?若存在,请此时点P的坐标:若不存在,请说明理由;
(3)当点P运动到什么位置时,四边形ABCP的面积最大,并求出其最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+4经过A(﹣3,0)、B(4,0)两点,且与y轴交于点C,D(4﹣4,0).动点P从点A出发,沿线段AB以每秒1个单位长度的速度向点B移动,同时动点Q从点C出发,沿线段CA以某一速度向点A移动.
(1)求该抛物线的解析式;
(2)若经过t秒的移动,线段PQ被CD垂直平分,求此时t的值;
(3)在第一象限的抛物线上取一点G,使得S△GCB=S△GCA,再在抛物线上找点E(不与点A、B、C重合),使得∠GBE=45°,求E点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知y=|y1|+y2﹣1,其中y1=x﹣3,y2与x成反比例关系,且当x=2时,y2=3.
(1)根据给定的条件写出y与x的函数表达式及自变量x的取值范围: .
(2)当x>0时,根据y与x的函数表达式,选取适当的自变量x的值,完成下表,并根据表中数据,在平面直角坐标系xOy中描点,画出该函数x>0时的图象.
x | …… | …… | |||||||
y | …… | …… |
(3)当x>0时,结合函数图象,解决相关问题:估计y=﹣x+5时,x的值约为 .(保留一位小数)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平行四边形ABCD中,对角线AC,BD交于O,EO⊥AC.
(1)若△ABE的周长为10cm,求平行四边形ABCD的周长;
(2)若∠ABC=78°,AE平分∠BAC,试求∠DAC的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知在△ABC中,∠A=60°,∠C=90°,将△ABC绕点B顺时针旋转150°,得到△DBE.请仅用无刻度的直尺,按要求画图(保留画图痕迹,在图中标出字母,并在图下方表示出所画图形).
(1)在图①中,画一个等边三角形;
(2)在图②中,画一个等腰直角三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小南利用几何画板画图,探索结论,他先画∠MAN=90°,在射线AM上取一点B,在射线AN上取一点C,连接BC,再作点A关于直线BC的对称点D,连接AD、BD,得到如图所示图形,移动点C,小南发现:当AD=BC时,∠ABD=90°;请你继续探索;当2AD=BC时,∠ABD的度数是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程x2-2x+m-1=0.
(1)若此方程有两个不相等的实数根,求实数m的取值范围;
(2)当Rt△ABC的斜边长c=,且两直角边a和b恰好是这个方程的两个根时,求Rt△ABC的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com