精英家教网 > 初中数学 > 题目详情
数学课上,李老师出示了这样一道题目:如图1,正方形ABCD的边长为12,P为边BC延长线上的一点,E为DP的中点,DP的垂直平分线交边DC于M,交边AB的延长线于N.当CP=6时,EM与EN的比值是多少?
经过思考,小明展示了一种正确的解题思路:过E作直线平行于BC交DC,AB分别于F,G,如图2,则可得:,因为DE=EP,所以DF=FC.可求出EF和EG的值,进而可求得EM与EN的比值.
(1)请按照小明的思路写出求解过程.
(2)小东又对此题作了进一步探究,得出了DP=MN的结论,你认为小东的这个结论正确吗?如果正确,请给予证明;如果不正确,请说明理由.

【答案】分析:(1)过E作EG∥BC交DC、AB分别于F、G,如图2,结合平行线分线段成比例定理则可得:,因为DE=EP,可知所以DF=FC,可求出EF和EG的值,再利用AB∥CD,可得EM:EN=EF:EG,进而可求得EM与EN的比值;
(2)作MH∥BC交AB于点H,先利用AB∥CD,可得∠MNH=∠CMN,结合对顶角的性质,易得∠MNH=∠CMN=∠DME=90°-∠CDP,而∠DPC=90°-∠CDP,那么∠DPC=∠MNH,再加上一对直角,和一组对应边(HM=CD),可证两三角形△DPH和△MNH全等,从而有DP=MN.
解答:(1)解:过E作直线GE平行于BC交DC,AB分别于点F,G,(如图2)
,GF=BC=12,
∵DE=EP,
∴DF=FC,(2分)
,EG=GF+EF=12+3=15,
;(4分)

(2)证明:正确,
作MH∥BC交AB于点H,(5分)(如图1)
则MH=CB=CD,∠MHN=90°,
∵∠DCP=180°-90°=90°,
∴∠DCP=∠MHN,
∵NE是DP的垂直平分线,
∵∠MNH=∠CMN=∠DME=90°-∠CDP,∠DPC=90°-∠CDP,
∴∠DPC=∠MNH,
∴△DPC≌△MNH,(7分)
∴DP=MN.(8分)
点评:本题利用了平行线分线段成比例定理、三角形中位线定理、平行线性质、全等三角形的判定和性质等知识.关键是作合适的辅助线,使所求的线段在一个三角形中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、数学课上,李老师出示了如下框中的题目.

小敏与同桌小聪讨论后,进行了如下解答:
(1)特殊情况•探索结论
当点E为AB的中点时,如图1,确定线段AE与的DB大小关系.请你直接写出结论:AE
=
DB(填“>”,“<”或“=”).

(2)特例启发,解答題目
解:题目中,AE与DB的大小关系是:AE
=
DB(填“>”,“<”或“=”).理由如下:
如图2,过点E作EF∥BC,交AC于点F,(请你完成以下解答过程)
(3)拓展结论,设计新题
在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,求CD的长(请你直接写出结果).

查看答案和解析>>

科目:初中数学 来源: 题型:

数学课上,李老师出示了这样一道题目:如图1,正方形ABCD的边长为12,P为边BC延长线上的一点,E为DP的中点,DP的垂直平分线交边DC于M,交边AB的延长线于N.当CP=6时,EM与EN的比值是多少?
经过思考,小明展示了一种正确的解题思路:过E作直线平行于BC交DC,AB分别于F,G,如图2,则可得:
DF
FC
=
DE
EP
,因为DE=EP,所以DF=FC.可求出EF和EG的值,进而可求得EM与EN的比值.
(1)请按照小明的思路写出求解过程.
(2)小东又对此题作了进一步探究,得出了DP=MN的结论,你认为小东的这个结论正确吗?如果正确,请给予证明;如果不正确,请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

数学课上,李老师出示了如下的题目:
“在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC,如图,试确定线段AE与DB的大小关系,并说明理由”.
小敏与同桌小聪讨论后,进行了如下解答:
(1)特殊情况,探索结论
当点E为AB的中点时,如图1,确定线段AE与DB的大小关系,请你直接写出结论:AE
=
=
DB(填“>”,“<”或“=”).
 (2)特例启发,解答题目
解:题目中,AE与DB的大小关系是:AE
=
=
DB(填“>”,“<”或“=”).理由如下:如图2,过点E作EF∥BC,交AC于点F.(请你完成以下解答过程)
(3)拓展结论,设计新题
在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,求CD的长(请你直接写出结果).

查看答案和解析>>

科目:初中数学 来源: 题型:

数学课上,李老师出示了一道题目:在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC,如图,试确定线段AE与DB的大小关系,并说明理由.
小敏与同桌小聪讨论后,进行了如下解答:
(1)特殊情况,探索结论:当点E为AB的中点时,如图1,确定线段AE与DB的大小关系,请你直接写出结论:AE
=
=
DB(填“>”,“<”或“=”).
(2)特例启发,解答题目

查看答案和解析>>

科目:初中数学 来源: 题型:

数学课上,李老师出示了如下框中的题目.

小明与同桌小聪讨论后,进行了如下解答:
(1)特殊情况,探索结论
当点E为AB的中点时,如图1,确定线段AE与DB的大小关系,请你直接写出结论:AE
=
=
DB(填“>”,“<”或“=”).

(2)一般情况,证明结论:
如图2,过点E作EF∥BC,交AC于点F.(请你继续完成对以上问题(1)中所填写结论的证明)
(3)拓展结论,设计新题:
在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC. 若△ABC的边长为1,AE=2,则CD的长为
1或3
1或3
(请直接写出结果).

查看答案和解析>>

同步练习册答案