精英家教网 > 初中数学 > 题目详情
12.某大学食堂共有7个大餐厅和3个小餐厅,经过测试,同时开放3个大餐厅和2个小餐厅,可供3160名学生就餐;同时开放2个大餐厅和3个小餐厅,可供2640名学生就餐.
(1)求1个大餐厅、1个小餐厅可分别供多少名学生就餐?
(2)若10个餐厅同时开放,能否供全校的6500名学生就餐?请说明理由.

分析 (1)设1个大餐厅可供x名学生就餐,1个小餐厅可供y名学生就餐,根据“同时开放3个大餐厅和2个小餐厅,可供3160名学生就餐;同时开放2个大餐厅和3个小餐厅,可供2640名学生就餐”,可得出关于x、y的二元一次方程组,解之即可得出结论;
(2)根据(1)的结论求出同时开放7个大餐厅和3个小餐厅可供就餐的人数,再与6500比较后即可得出结论.

解答 解:(1)设1个大餐厅可供x名学生就餐,1个小餐厅可供y名学生就餐,
根据题意得:$\left\{\begin{array}{l}{3x+2y=3160}\\{2x+3y=2640}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{x=840}\\{y=320}\end{array}\right.$.
答:1个大餐厅可供840名学生就餐,1个小餐厅可供320名学生就餐.
(2)840×7+320×3=6840(名),
∵6840>6500,
∴如果同时开放10个餐厅,能够供全校的6500名学生就餐,

点评 本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,列出二元一次方程组;(2)根据数量关系求出同时开放10个餐厅可供就餐的人数.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

19.若x=1是方程2x+m-6=0的解,则m的值是(  )
A.4B.-4C.-8D.8

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.在一节数学课上,老师出示了这样一个问题让学生探究:
已知:如图在△ABC中,点D 是BA边延长线上一动点,点F 在BC上,且$\frac{CF}{BF}$=$\frac{1}{2}$,连接DF交AC于点E.
(1)如图1,当点E恰为DF的中点时,请求出$\frac{AD}{AB}$的值;
(2)如图2,当$\frac{DE}{EF}$=a(a>0)时,请求出$\frac{AD}{AB}$的值(用含a的代数式表示).
思考片刻后,同学们纷纷表达自己的想法:
甲:过点F作FG∥AB交AC于点G,构造相似三角形解决问题;
乙:过点F作FG∥AC交AB于点G,构造相似三角形解决问题;
丙:过点D作DG∥BC交CA延长线于点G,构造相似三角形解决问题;
老师说:“这三位同学的想法都可以”.
请参考上面某一种想法,完成第(1)问的求解过程,并直接写出第(2)问$\frac{AD}{AB}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.下列命题不正确的是(  )
A.全等三角形的对应高、对应中线、对应角平分线相等
B.有两个角和其中一个角的平分线对应相等的两个三角形全等
C.有两条边和其中一边上的中线对应相等的两个三角形全等
D.有两条边和其中一边上的高对应相等的两个三角形全等

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.一个两位数的两个数字之和为11,两个数字之差为5.求这个两位数,此题的解(  )
A.0个B.1个C.2个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.利用勾股定理可以在数轴上画出表示$\sqrt{20}$的点,请依据以下思路完成画图,并保留画图痕迹:
第一步:(计算)尝试满足$\sqrt{20}$=$\sqrt{{a}^{2}+{b}^{2}}$,使其中a,b都为正整数,你取的正整数a=4,b=2;
第二步:(画长为$\sqrt{20}$的线段)以第一步中你所取的正整数a,b为两条直角边长画Rt△OEF,使O为原点,点E落在数轴的正半轴上,∠OEF=90°,则斜边OF的长即为$\sqrt{20}$,请在下面的数轴上画图;(第二步不要求尺规作图,不要求写画法)
第三步:(画表示$\sqrt{20}$的点)在下面的数轴上画出表示$\sqrt{20}$的点M,并描述第三步的画图步骤:以原点为圆心,OF为半径画弧交数轴的正半轴于点M,则点M为所作.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,正方形ABCD的对角线AC、BD相交于点O,点E在DB的延长线上,连接EC.过点D作DM⊥EC,垂足为M,DM与AC相交于点F,连接EF.求证:
EF∥BC.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,AD为△ABC的高,BE为△ABC的角平分线,若∠EBA=34°,∠AEB=72°.
(I)求∠CAD和∠BAD的度数;
(2)若点F为线段BC上任意一点,当△EFC为直角三角形时,试求∠BEF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.解不等式组$\left\{\begin{array}{l}{1-2(x-1)≤5①}\\{\frac{3x+2}{2}<x+\frac{5}{2}②}\end{array}\right.$.

查看答案和解析>>

同步练习册答案